On some perturbations of the total variation image inpainting method. Part III: Minimization among sets with finite perimeter

被引:0
|
作者
Bildhauer M. [1 ]
Fuchs M. [1 ]
机构
[1] Universität des Saarlandes, Fachbereich 6.1 Mathematik, Postfach 15 11 50, Saarbrücken
关键词
Radon; Radon Measure; Volume Constraint; White Region; Bound Lipschitz Domain;
D O I
10.1007/s10958-015-2361-1
中图分类号
学科分类号
摘要
We propose a model for the restoration of images consisting only of completely black or completely white regions with the use of Caccioppoli sets. Bibliography: 15 titles. © 2015 Springer Science+Business Media New York.
引用
收藏
页码:142 / 146
页数:4
相关论文
共 4 条
  • [1] On Some Perturbations of the Total Variation Image Inpainting Method. Part i: Regularity Theory
    Bildhauer M.
    Fuchs M.
    Journal of Mathematical Sciences, 2014, 202 (2) : 154 - 169
  • [2] On some perturbations of the total variation image inpainting method. Part II: Relaxation and dual variational formulation
    Bildhauer M.
    Fuchs M.
    Journal of Mathematical Sciences, 2015, 205 (2) : 121 - 140
  • [3] Research on image inpainting algorithm of improved total variation minimization method
    Chen, Yuantao
    Zhang, Haopeng
    Liu, Linwu
    Tao, Jiajun
    Zhang, Qian
    Yang, Kai
    Xia, Runlong
    Xie, Jingbo
    JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2021, 14 (5) : 5555 - 5564
  • [4] Research on image inpainting algorithm of improved total variation minimization method
    Yuantao Chen
    Haopeng Zhang
    Linwu Liu
    Jiajun Tao
    Qian Zhang
    Kai Yang
    Runlong Xia
    Jingbo Xie
    Journal of Ambient Intelligence and Humanized Computing, 2023, 14 : 5555 - 5564