Sparse bounds for pseudodifferential operators

被引:1
|
作者
David Beltran
Laura Cladek
机构
[1] Basque Center for Applied Mathematics (BCAM),Department of Mathematics
[2] University of California,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We prove sparse bounds for pseudodifferential operators associated to Hörmander symbol classes. Our sparse bounds are sharp up to the endpoint and rely on a single scale analysis. As a consequence, we deduce a range of weighted estimates for pseudodifferential operators. The results naturally apply to the context of oscillatory Fourier multipliers, with applications to dispersive equations and oscillatory convolution kernels.
引用
收藏
页码:89 / 116
页数:27
相关论文
共 50 条
  • [1] Sparse bounds for pseudodifferential operators
    Beltran, David
    Cladek, Laura
    JOURNAL D ANALYSE MATHEMATIQUE, 2020, 140 (01): : 89 - 116
  • [2] LOWER BOUNDS FOR PSEUDODIFFERENTIAL OPERATORS
    MELIN, A
    ARKIV FOR MATEMATIK, 1971, 9 (01): : 117 - &
  • [3] Lower bounds for pseudodifferential operators
    Parenti, C
    Parmeggiani, A
    MICROLOCAL ANALYSIS AND SPECTRAL THEORY, 1997, 490 : 251 - 262
  • [4] LP BOUNDS FOR PSEUDODIFFERENTIAL OPERATORS
    FEFFERMAN, C
    ISRAEL JOURNAL OF MATHEMATICS, 1973, 14 (04) : 413 - 417
  • [5] LOWER BOUNDS FOR PSEUDODIFFERENTIAL-OPERATORS
    LERNER, N
    NOURRIGAT, J
    ANNALES DE L INSTITUT FOURIER, 1990, 40 (03) : 657 - 682
  • [6] Lower bounds for pseudodifferential operators with a radial symbol
    Amour, Laurent
    Jager, Lisette
    Nourrigat, Jean
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2015, 103 (05): : 1157 - 1162
  • [7] On logarithmic bounds of maximal sparse operators
    Karagulyan, Grigori A.
    Lacey, Michael T.
    MATHEMATISCHE ZEITSCHRIFT, 2020, 294 (3-4) : 1271 - 1281
  • [8] On logarithmic bounds of maximal sparse operators
    Grigori A. Karagulyan
    Michael T. Lacey
    Mathematische Zeitschrift, 2020, 294 : 1271 - 1281
  • [9] Pseudodifferential operators and Hecke operators
    Choie, YJ
    APPLIED MATHEMATICS LETTERS, 1998, 11 (05) : 29 - 34
  • [10] Pseudodifferential operators and Hecke operators
    Appl Math Lett, 5 (29-34):