Asymptotic behavior of the solution of a nonlinear integro-differential diffusion equation

被引:0
|
作者
T. A. Dzhangveladze
Z. V. Kiguradze
机构
[1] Ivane Javakhishvili Tbilisi State University,
[2] Ilia Chavchavadze State University,undefined
来源
Differential Equations | 2008年 / 44卷
关键词
Asymptotic Behavior; Homogeneous Boundary Condition; Homogeneous Dirichlet Boundary Condition; Maxwell System; Quasistationary Approximation;
D O I
暂无
中图分类号
学科分类号
摘要
We study the asymptotic behavior as t → ∞ of the solution of the initial-boundary value problem for the nonlinear integro-differential equation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \frac{{\partial U}} {{\partial t}} = \frac{\partial } {{\partial x}}\left[ {a\left( {\mathop \smallint \limits_0^t \left( {\frac{{\partial U}} {{\partial x}}} \right)^2 d\tau } \right)\frac{{\partial U}} {{\partial x}}} \right], $$\end{document} where a(S) = (1 + S)p, 0 < p ≤ 1. We consider problems with homogeneous boundary conditions as well as with a nonhomogeneous boundary condition on part of the boundary. The orders of convergence are established.
引用
收藏
页码:538 / 550
页数:12
相关论文
共 50 条
  • [1] Asymptotic behavior of the solution of a nonlinear integro-differential diffusion equation
    Dzhangveladze, T. A.
    Kiguradze, Z. V.
    [J]. DIFFERENTIAL EQUATIONS, 2008, 44 (04) : 538 - 550
  • [2] Asymptotic behavior of the solution of a system of nonlinear integro-differential equations
    M. M. Aptsiauri
    T. A. Jangveladze
    Z. V. Kiguradze
    [J]. Differential Equations, 2012, 48 : 72 - 80
  • [3] Asymptotic behavior of the solution of a system of nonlinear integro-differential equations
    Aptsiauri, M. M.
    Jangveladze, T. A.
    Kiguradze, Z. V.
    [J]. DIFFERENTIAL EQUATIONS, 2012, 48 (01) : 72 - 80
  • [4] EXISTENCE AND ASYMPTOTIC BEHAVIOR OF SOLUTIONS OF A NONLINEAR STOCHASTIC INTEGRO-DIFFERENTIAL EQUATION
    RAO, ANV
    TSOKOS, CP
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 19 (06): : A732 - &
  • [6] Numerical Solution of a Nonlinear Integro-Differential Equation
    Busa, Jan
    Hnatic, Michal
    Honkonen, Juha
    Lucivjansky, Toma
    [J]. MATHEMATICAL MODELING AND COMPUTATIONAL PHYSICS (MMCP 2015), 2016, 108
  • [7] EXISTENCE OF THE SOLUTION OF A NONLINEAR INTEGRO-DIFFERENTIAL EQUATION
    VATSYA, SR
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 1989, 82 (01) : 241 - 244
  • [8] A SOLUTION TO A NONLINEAR FREDHOLM INTEGRO-DIFFERENTIAL EQUATION
    Assanova, Anar T.
    Karakenova, Sayakhat G.
    Mynbayeva, Sandugash T.
    Uteshova, Rosa E.
    [J]. QUAESTIONES MATHEMATICAE, 2024, 47 (01) : 61 - 73
  • [9] ASYMPTOTIC POWER TYPE BEHAVIOR OF SOLUTIONS TO A NONLINEAR FRACTIONAL INTEGRO-DIFFERENTIAL EQUATION
    Ahmad, Ahmad M.
    Furati, Khaled M.
    Tatar, Nasser-Eddine
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2017,
  • [10] Solution of a singular integro-differential equation with the use of asymptotic polynomials
    V. P. Gribkova
    S. M. Kozlov
    [J]. Differential Equations, 2013, 49 : 1150 - 1159