Randomized Fixed-Parameter Algorithms for the Closest String Problem

被引:0
|
作者
Zhi-Zhong Chen
Bin Ma
Lusheng Wang
机构
[1] Tokyo Denki University,Division of Information System Design
[2] University of Waterloo,School of Computer Science
[3] City University of Hong Kong,Department of Computer Science
来源
Algorithmica | 2016年 / 74卷
关键词
The closest string problem; Fixed-parameter algorithms ; Randomized algorithms; Computational biology;
D O I
暂无
中图分类号
学科分类号
摘要
Given a set S={s1,s2,…,sn}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S = \{s_1, s_2, \ldots , s_n\}$$\end{document} of strings of equal length L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L$$\end{document} and an integer d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d$$\end{document}, the closest string problem (CSP) requires the computation of a string s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s$$\end{document} of length L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L$$\end{document} such that d(s,si)≤d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d(s, s_i) \le d$$\end{document} for each si∈S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s_i \in S$$\end{document}, where d(s,si)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d(s, s_i)$$\end{document} is the Hamming distance between s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s$$\end{document} and si\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s_i$$\end{document}. The problem is NP-hard and has been extensively studied in the context of approximation algorithms and fixed-parameter algorithms. Fixed-parameter algorithms provide the most practical solutions to its real-life applications in bioinformatics. In this paper we develop the first randomized fixed-parameter algorithms for CSP. Not only are the randomized algorithms much simpler than their deterministic counterparts, their time complexities are also significantly better than the previously best known (deterministic) algorithms.
引用
收藏
页码:466 / 484
页数:18
相关论文
共 50 条
  • [1] Randomized Fixed-Parameter Algorithms for the Closest String Problem
    Chen, Zhi-Zhong
    Ma, Bin
    Wang, Lusheng
    ALGORITHMICA, 2016, 74 (01) : 466 - 484
  • [3] Fixed-parameter algorithms for CLOSEST STRING and related problems
    Gramm, J
    Niedermeier, R
    Rossmanith, P
    ALGORITHMICA, 2003, 37 (01) : 25 - 42
  • [4] Fixed-Parameter Tractability of Crossover: Steady-State GAs on the Closest String Problem
    Sutton, Andrew M.
    ALGORITHMICA, 2021, 83 (04) : 1138 - 1163
  • [5] Fixed-Parameter Tractability of Crossover: Steady-State GAs on the Closest String Problem
    Andrew M. Sutton
    Algorithmica, 2021, 83 : 1138 - 1163
  • [6] Fixed-parameter algorithms for the cocoloring problem
    Campos, Victor
    Klein, Sulamita
    Sampaio, Rudini
    Silva, Ana
    DISCRETE APPLIED MATHEMATICS, 2014, 167 : 52 - 60
  • [7] Randomized and Parameterized Algorithms for the Closest String Problem
    Chen, Zhi-Zhong
    Ma, Bin
    Wang, Lusheng
    COMBINATORIAL PATTERN MATCHING, CPM 2014, 2014, 8486 : 100 - 109
  • [8] Two Fixed-Parameter Algorithms for the Cocoloring Problem
    Campos, Victor
    Klein, Sulamita
    Sampaio, Rudini
    Silva, Ana
    ALGORITHMS AND COMPUTATION, 2011, 7074 : 634 - +
  • [9] Fixed-Parameter Evolutionary Algorithms and the Vertex Cover Problem
    Stefan Kratsch
    Frank Neumann
    Algorithmica, 2013, 65 : 754 - 771
  • [10] Fixed-Parameter Evolutionary Algorithms and the Vertex Cover Problem
    Kratsch, Stefan
    Neumann, Frank
    ALGORITHMICA, 2013, 65 (04) : 754 - 771