Rademacher’s reciprocity law for Dedekind sums in function fields

被引:0
|
作者
Yoshinori Hamahata
机构
[1] Ritsumeikan University,Institute for Teaching and Learning
来源
关键词
Dedekind sum; Carlitz module; Function fields; Primary 11F20; Secondary 11G09;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a Dedekind sum s(a,c)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s(a,c)$$\end{document} in function fields, defined via the Carlitz module, similar to the classical Dedekind sum D(a,c)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D(a,c)$$\end{document}. In this paper, we prove an analog of Pommersheim’s three-term reciprocity law for s(a,c)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s(a,c)$$\end{document}.
引用
收藏
页码:449 / 458
页数:9
相关论文
共 50 条