Low Order-Value Optimization and applications

被引:0
|
作者
R. Andreani
J. M. Martínez
L. Martínez
F. S. Yano
机构
[1] State University of Campinas,Department of Applied Mathematics, IMECC
[2] State University of Campinas,UNICAMP
[3] Institute Pasteur,Institute of Chemistry
[4] Itaú Bank,undefined
来源
Journal of Global Optimization | 2009年 / 43卷
关键词
Order-Value Optimization; Algorithms; Convergence; Robust estimation of parameters; Hidden patterns;
D O I
暂无
中图分类号
学科分类号
摘要
Given r real functions F1(x),...,Fr(x) and an integer p between 1 and r, the Low Order-Value Optimization problem (LOVO) consists of minimizing the sum of the functions that take the p smaller values. If (y1,...,yr) is a vector of data and T(x, ti) is the predicted value of the observation i with the parameters \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x \in I\!\!R^n$$\end{document} , it is natural to define Fi(x) =  (T(x, ti) − yi)2 (the quadratic error in observation i under the parameters x). When p =  r this LOVO problem coincides with the classical nonlinear least-squares problem. However, the interesting situation is when p is smaller than r. In that case, the solution of LOVO allows one to discard the influence of an estimated number of outliers. Thus, the LOVO problem is an interesting tool for robust estimation of parameters of nonlinear models. When p ≪ r the LOVO problem may be used to find hidden structures in data sets. One of the most successful applications includes the Protein Alignment problem. Fully documented algorithms for this application are available at www.ime.unicamp.br/~martinez/lovoalign. In this paper optimality conditions are discussed, algorithms for solving the LOVO problem are introduced and convergence theorems are proved. Finally, numerical experiments are presented.
引用
收藏
页码:1 / 22
页数:21
相关论文
共 50 条
  • [1] Low Order-Value Optimization and applications
    Andreani, R.
    Martinez, J. M.
    Martinez, L.
    Yano, F. S.
    JOURNAL OF GLOBAL OPTIMIZATION, 2009, 43 (01) : 1 - 22
  • [2] Order-value optimization and new applications
    Martinez, Jose Mario
    ICIAM 07: 6TH INTERNATIONAL CONGRESS ON INDUSTRIAL AND APPLIED MATHEMATICS, 2009, : 279 - 296
  • [3] Optimality condition and complexity of order-value optimization problems and low order-value optimization problems
    Zhongyi Jiang
    Qiying Hu
    Xiaojin Zheng
    Journal of Global Optimization, 2017, 69 : 511 - 523
  • [4] Optimality condition and complexity of order-value optimization problems and low order-value optimization problems
    Jiang, Zhongyi
    Hu, Qiying
    Zheng, Xiaojin
    JOURNAL OF GLOBAL OPTIMIZATION, 2017, 69 (02) : 511 - 523
  • [5] Generalized order-value optimization
    José Mario Martínez
    TOP, 2012, 20 : 75 - 98
  • [6] Generalized order-value optimization
    Martinez, Jose Mario
    TOP, 2012, 20 (01) : 75 - 98
  • [7] Low order-value approach for solving VaR-constrained optimization problems
    E. G. Birgin
    L. F. Bueno
    N. Krejić
    J. M. Martínez
    Journal of Global Optimization, 2011, 51 : 715 - 742
  • [8] A modified Levenberg-Marquardt algorithm for low order-value optimization problem
    Lv, Xiaochen
    Yu, Zhensheng
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2024, : 5629 - 5644
  • [9] Low order-value approach for solving VaR-constrained optimization problems
    Birgin, E. G.
    Bueno, L. F.
    Krejic, N.
    Martinez, J. M.
    JOURNAL OF GLOBAL OPTIMIZATION, 2011, 51 (04) : 715 - 742
  • [10] A first-order regularized approach to the order-value optimization problem
    Alvarez, G. Q.
    Birgin, E. G.
    OPTIMIZATION METHODS & SOFTWARE, 2025,