A new parallel algorithm for solving large-scale Markov chains

被引:0
|
作者
Abderezak Touzene
机构
[1] Sultan Qaboos University,Computer Science Department
来源
关键词
Performance evaluation; Markov chains; Iterative methods; Aggregation techniques;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we propose a new parallel sparse iterative method (PPSIA) for computing the stationary distribution of large-scale Markov chains. The PPSIA method is based on Markov chain state isolation and aggregation techniques. The parallel method conserves as much as possible the benefits of aggregation, and Gauss–Seidel effects contained in the sequential algorithm (SIA) using a pipelined technique. Both SIA and PPSIA exploit sparse matrix representation in order to solve large-scale Markov chains. Some Markov chains have been tested to compare the performance of SIA, PPSIA algorithms with other techniques such as the power method, and the generalized minimal residual GMRES method. In all the tested models, PPSIA outperforms the other methods and shows a super-linear speed-up.
引用
收藏
页码:239 / 253
页数:14
相关论文
共 50 条