Abelian varieties over large algebraic fields with infinite torsion

被引:0
|
作者
David Zywina
机构
[1] Cornell University,Department of Mathematics
来源
关键词
Conjugacy Class; Abelian Variety; Reductive Group; Maximal Torus; Galois Representation;
D O I
暂无
中图分类号
学科分类号
摘要
Let A be a non-zero abelian variety defined over a number field K and let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline K $$\end{document} be a fixed algebraic closure of K. For each element σ of the absolute Galois group \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{Gal}}(\overline K /K)$$\end{document}, let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline K (\sigma )$$\end{document} be the fixed field in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline K $$\end{document} of σ. We show that the torsion subgroup of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A(\overline K (\sigma ))$$\end{document} is infinite for all \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma \in {\text{Gal}}(\overline K /K)$$\end{document} outside of some set of Haar measure zero. This proves the number field case of a conjecture of W.-D. Geyer and M. Jarden.
引用
收藏
页码:493 / 508
页数:15
相关论文
共 50 条