Ridge regression estimators for the extreme value index

被引:0
|
作者
Sven Buitendag
Jan Beirlant
Tertius de Wet
机构
[1] Department of Mathematics,Department of Statistics and Actuarial Science
[2] KU Leuven,Department of Statistics and Actuarial Science
[3] Stellenbosch University,undefined
[4] University of the Free State,undefined
来源
Extremes | 2019年 / 22卷
关键词
Extreme value index; Ridge regression; Least squares regression; Hill estimator; Generalized Hill estimator; 60G70; 62J07;
D O I
暂无
中图分类号
学科分类号
摘要
We consider bias reduced estimators of the extreme value index (EVI) in case of Pareto-type distributions and under all max-domains of attraction. To this purpose we revisit the regression approach started in Feuerverger and Hall (Ann. Stat. 27, 760–781, 1999) and Beirlant et al. (Extremes 2, 177–200, 1999) in the case of a positive EVI, and in Beirlant et al. (2005) for real-valued EVI. We generalize these approaches using ridge regression exploiting the mathematical fact that the bias tends to 0 when the number of top data points used in the estimation is decreased. The penalty parameter is selected by minimizing the asymptotic mean squared error of the proposed estimator. The accuracy and utility of the ridge regression estimators are studied using simulations and are illustrated with case studies on reinsurance claim size data as well as daily wind speed data.
引用
收藏
页码:271 / 292
页数:21
相关论文
共 50 条
  • [1] Ridge regression estimators for the extreme value index
    Buitendag, Sven
    Beirlant, Jan
    de Wet, Tertius
    [J]. EXTREMES, 2019, 22 (02) : 271 - 292
  • [2] Refined Pickands estimators of the extreme value index
    Drees, H
    [J]. ANNALS OF STATISTICS, 1995, 23 (06): : 2059 - 2080
  • [3] Generalized Pickands estimators for the extreme value index
    Segers, J
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2005, 128 (02) : 381 - 396
  • [4] A general class of estimators of the extreme value index
    Drees, H
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1998, 66 (01) : 95 - 112
  • [5] Asymptotically unbiased estimators for the extreme-value index
    Peng, L
    [J]. STATISTICS & PROBABILITY LETTERS, 1998, 38 (02) : 107 - 115
  • [6] Multivariate moment based extreme value index estimators
    Matias Heikkilä
    Yves Dominicy
    Pauliina Ilmonen
    [J]. Computational Statistics, 2017, 32 : 1481 - 1513
  • [7] Multivariate moment based extreme value index estimators
    Heikkila, Matias
    Dominicy, Yves
    Ilmonen, Pauliina
    [J]. COMPUTATIONAL STATISTICS, 2017, 32 (04) : 1481 - 1513
  • [8] Kernel-type estimators for the extreme value index
    Groeneboom, P
    Lopuhaä, HP
    De Wolf, PP
    [J]. ANNALS OF STATISTICS, 2003, 31 (06): : 1956 - 1995
  • [9] On the comparison of several classical estimators of the extreme value index
    Cabral, Ivanilda
    Caeiro, Frederico
    Gomes, M. Ivette
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2022, 51 (01) : 179 - 196
  • [10] Modified Ridge Regression Estimators
    Khalaf, G.
    Mansson, Kristofer
    Shukur, Ghazi
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2013, 42 (08) : 1476 - 1487