Ecoenzymatic stoichiometry and microbial processing of organic matter in northern bogs and fens reveals a common P-limitation between peatland types

被引:0
|
作者
Brian H. Hill
Colleen M. Elonen
Terri M. Jicha
Randall K. Kolka
LaRae L. P. Lehto
Stephen D. Sebestyen
Lindsey R. Seifert-Monson
机构
[1] US Environmental Protection Agency,Mid
[2] US Forest Service,Continent Ecology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development
[3] Northern Research Station,Center for Research on Ecosystem Change
[4] University of Minnesota,Integrated Biosciences Graduate Program
[5] Sappi Fine Paper North America,undefined
[6] Ltd.,undefined
来源
Biogeochemistry | 2014年 / 120卷
关键词
Decomposition; Ecoenzymes; Peat; Soil; Stoichiometry;
D O I
暂无
中图分类号
学科分类号
摘要
We compared carbon (C), nitrogen (N), and phosphorus (P) concentrations in atmospheric deposition, runoff, and soils with microbial respiration [dehydrogenase (DHA)] and ecoenzyme activity (EEA) in an ombrotrophic bog and a minerotrophic fen to investigate the environmental drivers of biogeochemical cycling in peatlands at the Marcell Experimental Forest in northern Minnesota, USA. Ecoenzymatic stoichiometry was used to construct models for C use efficiency (CUE) and decomposition (M), and these were used to model respiration (Rm). Our goals were to determine the relative C, N, and P limitations on microbial processes and organic matter decomposition, and to identify environmental constraints on ecoenzymatic processes. Mean annual water, C, and P yields were greater in the fen, while N yields were similar in both the bog and fen. Soil chemistry differed between the bog and fen, and both watersheds exhibited significant differences among soil horizons. DHA and EEA differed by watersheds and soil horizons, CUE, M, and Rm differed only by soil horizons. C, N, or P limitations indicated by EEA stoichiometry were confirmed with orthogonal regressions of ecoenzyme pairs and enzyme vector analyses, and indicated greater N and P limitation in the bog than in the fen, with an overall tendency toward P-limitation in both the bog and fen. Ecoenzymatic stoichiometry, microbial respiration, and organic matter decomposition were responsive to resource availability and the environmental drivers of microbial metabolism, including those related to global climate changes.
引用
收藏
页码:203 / 224
页数:21
相关论文
共 1 条
  • [1] Ecoenzymatic stoichiometry and microbial processing of organic matter in northern bogs and fens reveals a common P-limitation between peatland types
    Hill, Brian H.
    Elonen, Colleen M.
    Jicha, Terri M.
    Kolka, Randall K.
    Lehto, Larae L. P.
    Sebestyen, Stephen D.
    Seifert-Monson, Lindsey R.
    BIOGEOCHEMISTRY, 2014, 120 (1-3) : 203 - 224