Quantum anomaly detection for collider physics

被引:0
|
作者
Sulaiman Alvi
Christian W. Bauer
Benjamin Nachman
机构
[1] University of California,Department of Physics
[2] Lawrence Berkeley National Laboratory,Physics Division
[3] University of California,Berkeley Institute for Data Science
关键词
Multi-Higgs Models; New Light Particles;
D O I
暂无
中图分类号
学科分类号
摘要
We explore the use of Quantum Machine Learning (QML) for anomaly detection at the Large Hadron Collider (LHC). In particular, we explore a semi-supervised approach in the four-lepton final state where simulations are reliable enough for a direct background prediction. This is a representative task where classification needs to be performed using small training datasets — a regime that has been suggested for a quantum advantage. We find that Classical Machine Learning (CML) benchmarks outperform standard QML algorithms and are able to automatically identify the presence of anomalous events injected into otherwise background-only datasets.
引用
收藏
相关论文
共 50 条
  • [1] Quantum anomaly detection for collider physics
    Alvi, Sulaiman
    Bauer, Christian W.
    Nachman, Benjamin
    JOURNAL OF HIGH ENERGY PHYSICS, 2023, 2023 (02)
  • [2] Quantum anomaly in molecular physics
    Camblong, HE
    Epele, LN
    Fanchiotti, H
    Canal, CAG
    PHYSICAL REVIEW LETTERS, 2001, 87 (22) : art. no. - 220402
  • [3] Novelty detection meets collider physics
    Hajer, Jan
    Li, Ying-Ying
    Liu, Tao
    Wang, He
    PHYSICAL REVIEW D, 2020, 101 (07)
  • [4] Unravelling physics beyond the standard model with classical and quantum anomaly detection
    Schuhmacher, Julian
    Boggia, Laura
    Belis, Vasilis
    Puljak, Ema
    Grossi, Michele
    Pierini, Maurizio
    Vallecorsa, Sofia
    Tacchino, Francesco
    Barkoutsos, Panagiotis
    Tavernelli, Ivano
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2023, 4 (04):
  • [5] Anomaly detection in high-energy physics using a quantum autoencoder
    Ngairangbam, Vishal S.
    Spannowsky, Michael
    Takeuchi, Michihisa
    PHYSICAL REVIEW D, 2022, 105 (09)
  • [6] Anomaly driven signatures of new invisible physics at the Large Hadron Collider
    Antoniadis, Ignatios
    Boyarsky, Alexey
    Espahbodi, Sam
    Ruchayskiy, Oleg
    Wells, James D.
    NUCLEAR PHYSICS B, 2010, 824 (1-2) : 296 - 313
  • [7] Example of a Quantum Anomaly in the Physics of Ultracold Gases
    Olshanii, Maxim
    Perrin, Helene
    Lorent, Vincent
    PHYSICAL REVIEW LETTERS, 2010, 105 (09)
  • [8] Collider physics
    Schaile, D
    1996 EUROPEAN SCHOOL OF HIGH-ENERGY PHYSICS, 1997, 97 (03): : 199 - 237
  • [9] Anomaly Detection for Beam Loss Maps in the Large Hadron Collider
    Valentino, Gianluca
    Bruce, Roderik
    Redaelli, Stefano
    Rossi, Roberto
    Theodoropoulos, Panagiotis
    Jaster-Merz, Sonja
    8TH INTERNATIONAL PARTICLE ACCELERATOR CONFERENCE (IPAC 2017), 2017, 874
  • [10] Quantum machine learning for quantum anomaly detection
    Liu, Nana
    Rebentrost, Patrick
    PHYSICAL REVIEW A, 2018, 97 (04)