Quantum criticality of excitonic Mott metal-insulator transitions in black phosphorus

被引:0
|
作者
Binjie Zheng
Junzhuan Wang
Qianghua Wang
Xin Su
Tianye Huang
Songlin Li
Fengqiu Wang
Yi Shi
Xiaomu Wang
机构
[1] Nanjing University,School of Electronic Science and Engineering
[2] Nanjing University,School of Physics
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Quantum phase transition refers to the abrupt change of ground states of many-body systems driven by quantum fluctuations. It hosts various intriguing exotic states around its quantum critical points approaching zero temperature. Here we report the spectroscopic and transport evidences of quantum critical phenomena of an exciton Mott metal-insulator-transition in black phosphorus. Continuously tuning the interplay of electron-hole pairs by photo-excitation and using Fourier-transform photo-current spectroscopy as a probe, we measure a comprehensive phase diagram of electron-hole states in temperature and electron-hole pair density parameter space. We characterize an evolution from optical insulator with sharp excitonic transition to metallic electron-hole plasma phases featured by broad absorption and population inversion. We also observe strange metal behavior that resistivity is linear in temperature near the Mott transition boundaries. Our results exemplify an ideal platform to investigating strongly-correlated physics in semiconductors, such as crossover between superconductivity and superfluity of exciton condensation.
引用
收藏
相关论文
共 50 条
  • [1] Quantum criticality of excitonic Mott metal-insulator transitions in black phosphorus
    Zheng, Binjie
    Wang, Junzhuan
    Wang, Qianghua
    Su, Xin
    Huang, Tianye
    Li, Songlin
    Wang, Fengqiu
    Shi, Yi
    Wang, Xiaomu
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [2] Marginal quantum criticality of metal-insulator transitions
    Misawa, Takahiro
    Yamaji, Youhei
    Imada, Masatoshi
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2007, 310 (02) : 925 - 927
  • [3] Quantum criticality at the metal-insulator transition
    Schmeltzer, D
    PHYSICAL REVIEW B, 2001, 63 (07)
  • [4] Quantum criticality around metal-insulator transitions of strongly correlated electron systems
    Misawa, Takahiro
    Imada, Masatoshi
    PHYSICAL REVIEW B, 2007, 75 (11)
  • [5] Mott Metal-Insulator Transitions in Pressurized Layered Trichalcogenides
    Kim, Heung-Sik
    Haule, Kristjan
    Vanderbilt, David
    PHYSICAL REVIEW LETTERS, 2019, 123 (23)
  • [6] Excitonic Metal-Insulator Phase Transition of the Mott Type in Compressed Calcium
    Voronkova, T. O.
    Sarry, A. M.
    Sarry, M. F.
    Skidan, S. G.
    PHYSICS OF THE SOLID STATE, 2017, 59 (05) : 977 - 985
  • [7] Mott-Anderson metal-insulator transitions from entanglement
    Canella, G. A.
    Franca, V. V.
    PHYSICAL REVIEW B, 2021, 104 (13)
  • [8] Quantum Sensing of Insulator-to-Metal Transitions in a Mott Insulator
    McLaughlin, Nathan J.
    Kalcheim, Yoav
    Suceava, Albert
    Wang, Hailong L.
    Schuller, Ivan K.
    Du, Chunhui H. Rita
    ADVANCED QUANTUM TECHNOLOGIES, 2021, 4 (05)
  • [9] Tunable magnons of an antiferromagnetic Mott insulator via interfacial metal-insulator transitions
    Sujan Shrestha
    Maryam Souri
    Christopher J. Dietl
    Ekaterina M. Pärschke
    Maximilian Krautloher
    Gabriel A. Calderon Ortiz
    Matteo Minola
    Xiatong Shi
    Alexander V. Boris
    Jinwoo Hwang
    Giniyat Khaliullin
    Gang Cao
    Bernhard Keimer
    Jong-Woo Kim
    Jungho Kim
    Ambrose Seo
    Nature Communications, 16 (1)
  • [10] METAL-INSULATOR TRANSITIONS
    MOTT, NF
    CONTEMPORARY PHYSICS, 1973, 14 (05) : 401 - 413