Symplectic integration approach for metastable systems

被引:0
|
作者
E. Klotins
机构
[1] Institute of Solid State Physics,
[2] University of Latvia,undefined
关键词
64.60.Cn Order-disorder transformations; statistical mechanics of model systems; 77.80.Dj Domain structure; hysteresis; 77.80.Fm Switching phenomena ;
D O I
暂无
中图分类号
学科分类号
摘要
Nonadiabatic behavior of metastable systems modeled by anharmonic Hamiltonians is reproduced by the Fokker-Planck and imaginary time Schrödinger equation scheme with subsequent symplectic integration. Example solutions capture ergodicity breaking, reassure the H-theorem of global stability [M. Shiino, Phys. Rev. A 36, 2393 (1987)], and reproduce spatially extended response under alternate source fields.
引用
收藏
页码:315 / 320
页数:5
相关论文
共 50 条
  • [1] Symplectic integration approach for metastable systems
    Klotins, E
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2006, 50 (1-2): : 315 - 320
  • [2] Symplectic integration of magnetic systems
    Webb, Stephen D.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 270 : 570 - 576
  • [3] Symplectic integration of hierarchical stellar systems
    Beust, H
    [J]. ASTRONOMY & ASTROPHYSICS, 2003, 400 (03): : 1129 - 1144
  • [4] SYMPLECTIC INTEGRATION OF HAMILTONIAN-SYSTEMS
    CHANNELL, PJ
    SCOVEL, C
    [J]. NONLINEARITY, 1990, 3 (02) : 231 - 259
  • [5] Symplectic integration of nonlinear Hamiltonian systems
    Govindan Rangarajan
    [J]. Pramana, 1997, 48 : 129 - 142
  • [6] Symplectic integration of learned Hamiltonian systems
    Offen, C.
    Ober-Bloebaum, S.
    [J]. CHAOS, 2022, 32 (01)
  • [7] Symplectic integration of nonlinear Hamiltonian systems
    Rangarajan, G
    [J]. PRAMANA-JOURNAL OF PHYSICS, 1997, 48 (01): : 129 - 142
  • [8] Symplectic Integration Schemes for Systems With Nonlinear Dissipation
    Limebeer, David J. N.
    Farshi, Farhang Haddad
    Ober-Blobaum, Sina
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2023, 68 (04) : 2338 - 2351
  • [9] Symplectic integration of Hamiltonian systems with additive noise
    Milstein, GN
    Repin, YM
    Tretyakov, MV
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 39 (06) : 2066 - 2088
  • [10] SYMPLECTIC INTEGRATION OF CONSTRAINED HAMILTONIAN-SYSTEMS
    LEIMKUHLER, B
    REICH, S
    [J]. MATHEMATICS OF COMPUTATION, 1994, 63 (208) : 589 - 605