Efficient polynomial-time algorithms for the constrained LCS problem with strings exclusion

被引:0
|
作者
Hsing-Yen Ann
Chang-Biau Yang
Chiou-Ting Tseng
机构
[1] National Center for High-Performance Computing,Department of Computer Science and Engineering
[2] National Sun Yat-sen University,undefined
来源
关键词
Design of algorithms; Longest common subsequence; Constrained LCS; NP-hard; Finite automata;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we revisit a recent variant of the longest common subsequence (LCS) problem, the string-excluding constrained LCS (STR-EC-LCS) problem, which was first addressed by Chen and Chao (J Comb Optim 21(3):383–392, 2011). Given two sequences \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Y$$\end{document} of lengths \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n,$$\end{document} respectively, and a constraint string \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P$$\end{document} of length \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r,$$\end{document} we are to find a common subsequence \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Z$$\end{document} of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Y$$\end{document} which excludes \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P$$\end{document} as a substring and the length of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Z$$\end{document} is maximized. In fact, this problem cannot be correctly solved by the previously proposed algorithm. Thus, we give a correct algorithm with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(mnr)$$\end{document} time to solve it. Then, we revisit the STR-EC-LCS problem with multiple constraints \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{ P_1, P_2, \ldots , P_k \}.$$\end{document} We propose a polynomial-time algorithm which runs in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(mnR)$$\end{document} time, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R = \sum _{i=1}^{k} |P_i|,$$\end{document} and thus it overthrows the previous claim of NP-hardness.
引用
收藏
页码:800 / 813
页数:13
相关论文
共 50 条
  • [1] Efficient polynomial-time algorithms for the constrained LCS problem with strings exclusion
    Ann, Hsing-Yen
    Yang, Chang-Biau
    Tseng, Chiou-Ting
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2014, 28 (04) : 800 - 813
  • [2] Polynomial-Time Approximation Algorithms for Weighted LCS Problem
    Cygan, Marek
    Kubica, Marcin
    Radoszewski, Jakub
    Rytter, Wojciech
    Walen, Tomasz
    [J]. COMBINATORIAL PATTERN MATCHING, 22ND ANNUAL SYMPOSIUM, CPM 2011, 2011, 6661 : 455 - 466
  • [3] Polynomial-time approximation algorithms for weighted LCS problem
    Cygan, M.
    Kubica, M.
    Radoszewski, J.
    Rytter, W.
    Walen, T.
    [J]. DISCRETE APPLIED MATHEMATICS, 2016, 204 : 38 - 48
  • [4] New efficient algorithms for the LCS and constrained LCS problems
    Iliopoulos, Costas S.
    Rahman, M. Sohel
    [J]. INFORMATION PROCESSING LETTERS, 2008, 106 (01) : 13 - 18
  • [5] Complexity and Polynomial-Time Approximation Algorithms around the Scaffolding Problem
    Chateau, Annie
    Giroudeau, Rodolphe
    [J]. ALGORITHMS FOR COMPUTATIONAL BIOLOGY, 2014, 8542 : 47 - 58
  • [6] Polynomial-time algorithms for the ordered maximum agreement subtree problem
    Dessmark, A
    Jansson, J
    Lingas, A
    Lundell, EM
    [J]. COMBINATORIAL PATTERN MATCHING, PROCEEDINGS, 2004, 3109 : 220 - 229
  • [7] Polynomial-time approximation algorithms for the coloring problem in some cases
    D. S. Malyshev
    [J]. Journal of Combinatorial Optimization, 2017, 33 : 809 - 813
  • [8] Polynomial-Time Algorithms for the Ordered Maximum Agreement Subtree Problem
    Anders Dessmark
    Jesper Jansson
    Andrzej Lingas
    Eva-Marta Lundell
    [J]. Algorithmica, 2007, 48 : 233 - 248
  • [9] Deterministic polynomial-time quantum algorithms for Simon’s problem
    Takashi Mihara
    Shao Chin Sung
    [J]. computational complexity, 2003, 12 : 162 - 175
  • [10] Polynomial-time algorithms for the ordered maximum agreement subtree problem
    Dessmark, Anders
    Jansson, Jesper
    Lingas, Andrzej
    Lundell, Eva-Marta
    [J]. ALGORITHMICA, 2007, 48 (03) : 233 - 248