Poly-symplectic Groupoids and Poly-Poisson Structures

被引:0
|
作者
Nicolas Martinez
机构
[1] Instituto de Matemática Pura e Aplicada,
来源
关键词
53D17; 53D20; Poly-Poisson structures; Poly-symplectic forms; Lie groupoids and Lie algebroids;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce poly-symplectic groupoids, which are natural extensions of symplectic groupoids to the context of poly-symplectic geometry, and define poly-Poisson structures as their infinitesimal counterparts. We present equivalent descriptions of poly-Poisson structures, including one related with AV-Dirac structures. We also discuss symmetries and reduction in the setting of poly-symplectic groupoids and poly-Poisson structures, and use our viewpoint to revisit results and develop new aspects of the theory initiated in Iglesias et al. (Lett Math Phys 103:1103–1133, 2013).
引用
收藏
页码:693 / 721
页数:28
相关论文
共 50 条
  • [1] Poly-symplectic Groupoids and Poly-Poisson Structures
    Martinez, Nicolas
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 2015, 105 (05) : 693 - 721
  • [2] Poly-Poisson sigma models and their relational poly-symplectic groupoids
    Contreras, Ivan
    Martinez Alba, Nicolas
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (07)
  • [3] Poly-Poisson Structures
    David Iglesias
    Juan Carlos Marrero
    Miguel Vaquero
    [J]. Letters in Mathematical Physics, 2013, 103 : 1103 - 1133
  • [4] Poly-Poisson Structures
    Iglesias, David
    Carlos Marrero, Juan
    Vaquero, Miguel
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 2013, 103 (10) : 1103 - 1133
  • [5] Poly-symplectic geometry and the AKSZ formalism
    Contreras, Ivan
    Martinez Alba, Nicolas
    [J]. REVIEWS IN MATHEMATICAL PHYSICS, 2021, 33 (09)
  • [6] On symplectic double groupoids and the duality of Poisson groupoids
    Mackenzie, KCH
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS, 1999, 10 (04) : 435 - 456
  • [7] Symplectic groupoids and Poisson electrodynamics
    Kupriyanov, Vladislav G.
    Sharapov, Alexey A.
    Szabo, Richard J.
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2024, 2024 (03)
  • [8] SYMPLECTIC GROUPOIDS AND POISSON MANIFOLDS
    WEINSTEIN, A
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1987, 16 (01) : 101 - 104
  • [9] Symplectic groupoids for Poisson integrators
    Cosserat, Oscar
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2023, 186
  • [10] Poisson sigma models and symplectic groupoids
    Cattaneo, AS
    Felder, G
    [J]. QUANTIZATION OF SINGULAR SYMPLECTIC QUOTIENTS, 2001, 198 : 61 - 93