Approximation of certain bivariate functions by almost Euler means of double Fourier series

被引:0
|
作者
Arti Rathore
Uaday Singh
机构
[1] Indian Institute of Technology Roorkee,Department of Mathematics
关键词
Double Fourier series; Symmetric partial sums; Modulus of continuity; Modulus of smoothness; Lipschitz class; Zygmund class; Almost Euler means; 40C05; 41A25; 26A15;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the degree of approximation of 2π-periodic functions of two variables, defined on T2=[−π,π]×[−π,π]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$T^{2}=[-\pi,\pi]\times[-\pi,\pi]$\end{document} and belonging to certain Lipschitz classes, by means of almost Euler summability of their Fourier series. The degree of approximation obtained in this way depends on the modulus of continuity associated with the functions. We also derive some corollaries from our theorems.
引用
收藏
相关论文
共 50 条