On four-point fractional q-integrodifference boundary value problems involving separate nonlinearity and arbitrary fractional order

被引:0
|
作者
Nichaphat Patanarapeelert
Thanin Sitthiwirattham
机构
[1] King Mongkut’s University of Technology North Bangkok,Department of Mathematics, Faculty of Applied Science
[2] Suan Dusit University,Mathematics Department, Faculty of Science and Technology
来源
关键词
Existence; -derivative; -integral; -integrodifference equation; 39A05; 39A13;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study a sequential Caputo fractional q-integrodifference equation with fractional q-integral and Riemann–Liouville fractional q-derivative boundary value conditions. Our problem contains 2(M+N+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$2(M+N+1)$\end{document} different orders and six different numbers of q in derivatives and integrals. The problem contains separate nonlinear functions. To examine existence and uniqueness results of the problem, Banach’s contraction principle and the Leray–Schauder nonlinear alternative are employed. An illustrative example is also provided.
引用
收藏
相关论文
共 50 条