Perturbation Theory for Weak Measurements in Quantum Mechanics, Systems with Finite-Dimensional State Space

被引:0
|
作者
Miguel Ballesteros
Nick Crawford
Martin Fraas
Jürg Fröhlich
Baptiste Schubnel
机构
[1] National Autonomous University of Mexico (UNAM),Department of Mathematical Physics Applied Mathematics and Systems Research Institute (IIMAS)
[2] Technion,Department of Mathematics
[3] Virginia Tech,Department of Mathematics
[4] ETH Zurich,Institut für Theoretische Physik
[5] Swiss Federal Railways (SBB),undefined
来源
Annales Henri Poincaré | 2019年 / 20卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The quantum theory of indirect measurements in physical systems is studied. The example of an indirect measurement of an observable represented by a self-adjoint operator N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {N}}$$\end{document} with finite spectrum is analyzed in detail. The Hamiltonian generating the time evolution of the system in the absence of direct measurements is assumed to be given by the sum of a term commuting with N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {N}}$$\end{document} and a small perturbation not commuting with N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {N}}$$\end{document}. The system is subject to repeated direct (projective) measurements using a single instrument whose action on the state of the system commutes with N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {N}}$$\end{document}. If the Hamiltonian commutes with the observable N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {N}}$$\end{document} (i.e., if the perturbation vanishes), the state of the system approaches an eigenstate of N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {N}}$$\end{document}, as the number of direct measurements tends to ∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\infty $$\end{document}. If the perturbation term in the Hamiltonian does not commute with N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {N}}$$\end{document}, the system exhibits “jumps” between different eigenstates of N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {N}}$$\end{document}. We determine the rate of these jumps to leading order in the strength of the perturbation and show that if time is rescaled appropriately a maximum likelihood estimate of N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {N}}$$\end{document} approaches a Markovian jump process on the spectrum of N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {N}}$$\end{document}, as the strength of the perturbation tends to 0.
引用
收藏
页码:299 / 335
页数:36
相关论文
共 50 条
  • [1] Perturbation Theory for Weak Measurements in Quantum Mechanics, Systems with Finite-Dimensional State Space
    Ballesteros, Miguel
    Crawford, Nick
    Fraas, Martin
    Frohlich, Jurg
    Schubnel, Baptiste
    ANNALES HENRI POINCARE, 2019, 20 (01): : 299 - 335
  • [2] Quantum mechanics in finite-dimensional Hilbert space
    de la Torre, AC
    Goyeneche, D
    AMERICAN JOURNAL OF PHYSICS, 2003, 71 (01) : 49 - 54
  • [3] Principles of finite-dimensional perturbation theory
    Krasovskii, IV
    Peresada, VI
    LOW TEMPERATURE PHYSICS, 1997, 23 (01) : 59 - 68
  • [4] FINITE-DIMENSIONAL QUANTUM-MECHANICS
    GUDDER, S
    NARODITSKY, V
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1981, 20 (08) : 619 - 643
  • [5] FINITE-DIMENSIONAL QUANTUM-MECHANICS OF A PARTICLE
    JAGANNATHAN, R
    SANTHANAM, TS
    VASUDEVAN, R
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1981, 20 (10) : 755 - 773
  • [6] Finite-dimensional quantum systems:: Complementarity, phase space, and all that
    Sánchez-Soto, LL
    Klimov, AB
    de Guise, H
    OPTICS AND SPECTROSCOPY, 2005, 99 (03) : 391 - 396
  • [7] Finite-dimensional quantum systems: Complementarity, phase space, and all that
    L. L. Sánchez-Soto
    A. B. Klimov
    H. de Guise
    Optics and Spectroscopy, 2005, 99 : 391 - 396
  • [8] FINITE-DIMENSIONAL RELATIVISTIC QUANTUM-MECHANICS
    GUDDER, SP
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1985, 24 (07) : 707 - 721
  • [9] Frame representation of quantum systems with finite-dimensional Hilbert space
    Cotfas, Nicolae
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2024, 57 (39)
  • [10] Conceptual inconsistencies in finite-dimensional quantum and classical mechanics
    Bondar, Denys I.
    Cabrera, Renan
    Rabitz, Herschel A.
    PHYSICAL REVIEW A, 2013, 88 (01):