Arrow's Theorem and Turing computability

被引:0
|
作者
H. Reiju Mihara
机构
[1] Economics,
[2] Kagawa University,undefined
[3] Takamatsu,undefined
[4] Kagawa 760,undefined
[5] JAPAN,undefined
来源
Economic Theory | 1997年 / 10卷
关键词
JEL Classification Numbers: D71; C69; D89.;
D O I
暂无
中图分类号
学科分类号
摘要
A social welfare function for a denumerable society satisfies Pairwise Computability if for each pair (x,y) of alternatives, there exists an algorithm that can decide from any description of each profile on {x,y} whether the society prefers x to y. I prove that if a social welfare function satisfying Unanimity and Independence also satisfies Pairwise Computability, then it is dictatorial. This result severely limits on practical grounds Fishburn's resolution (1970) of Arrow's impossibility. I also give an interpretation of a denumerable “society.”
引用
收藏
页码:257 / 276
页数:19
相关论文
共 50 条
  • [1] Arrow's Theorem and Turing computability
    Mihara, HR
    [J]. ECONOMIC THEORY, 1997, 10 (02) : 257 - 276
  • [2] Consistency, Turing computability and Godel's first incompleteness theorem
    Hadley, Robert F.
    [J]. MINDS AND MACHINES, 2008, 18 (01) : 1 - 15
  • [3] Consistency, Turing Computability and Gödel’s First Incompleteness Theorem
    Robert F. Hadley
    [J]. Minds and Machines, 2008, 18 : 1 - 15
  • [4] Feedback Turing Computability, and Turing Computability as Feedback
    Ackerman, Nathanael L.
    Freer, Cameron E.
    Lubarsky, Robert S.
    [J]. 2015 30TH ANNUAL ACM/IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE (LICS), 2015, : 523 - 534
  • [5] Deviant encodings and Turing's analysis of computability
    Copeland, B. Jack
    Proudfoot, Diane
    [J]. STUDIES IN HISTORY AND PHILOSOPHY OF SCIENCE, 2010, 41 (03): : 247 - 252
  • [6] Transcending Turing computability
    Maclennan, BJ
    [J]. MINDS AND MACHINES, 2003, 13 (01) : 3 - 22
  • [7] Transcending Turing Computability
    B.J. Maclennan
    [J]. Minds and Machines, 2003, 13 : 3 - 22
  • [8] Turing Computability: Structural Theory
    Arslanov M.M.
    Yamaleev M.M.
    [J]. Journal of Mathematical Sciences, 2021, 256 (1) : 1 - 33
  • [9] Parallel Feedback Turing Computability
    Lubarsky, Robert S.
    [J]. LOGICAL FOUNDATIONS OF COMPUTER SCIENCE (LFCS 2016), 2016, 9537 : 236 - 250
  • [10] An introduction to feedback Turing computability
    Ackerman, Nathanael L.
    Freer, Cameron E.
    Lubarsky, Robert S.
    [J]. JOURNAL OF LOGIC AND COMPUTATION, 2020, 30 (01) : 27 - 60