Establishment of an automatic diagnosis system for corneal endothelium diseases using artificial intelligence

被引:0
|
作者
Qu, Jing-hao [1 ,2 ]
Qin, Xiao-ran [3 ]
Xie, Zi-jun [1 ,2 ]
Qian, Jia-he [3 ,4 ]
Zhang, Yang [5 ]
Sun, Xiao-nan [6 ]
Sun, Yu-zhao [7 ]
Peng, Rong-mei [1 ,2 ]
Xiao, Ge-ge [1 ,2 ]
Lin, Jing [8 ]
Bian, Xiao-yan [9 ]
Chen, Tie-hong [10 ]
Cheng, Yan [11 ]
Gu, Shao-feng [1 ,2 ]
Wang, Hai-kun [1 ,2 ]
Hong, Jing [1 ,2 ]
机构
[1] Peking Univ Third Hosp, Dept Ophthalmol, Beijing, Peoples R China
[2] Peking Univ Third Hosp, Beijing Key Lab Restorat Damaged Ocular Nerve, Beijing, Peoples R China
[3] Chinese Acad Sci, Inst Automat, Beijing, Peoples R China
[4] Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing, Peoples R China
[5] Capital Med Univ, Beijing Tongren Hosp, Beijing Key Lab Ophthalmol & Visual Sci, Beijing Inst Ophthalmol,Beijing Tongren Eye Ctr, Beijing, Peoples R China
[6] Shenyang Fourth Peoples Hosp, Shenyang, Liaoning, Peoples R China
[7] China Med Univ, Dept Pathol, Hosp 1, Shenyang, Liaoning, Peoples R China
[8] Qingdao Univ, Dept Ophthalmol, Affiliated Hosp, Qingdao, Shandong, Peoples R China
[9] Baotou Chaoju Eye Hosp, Baotou 014000, Peoples R China
[10] Liaoning Aier Eye Hosp, Shenyang, Liaoning, Peoples R China
[11] Northwest Univ, Shanxi Prov Ophthalmol Clin Dis Res Ctr, Affiliated Hosp 1, Xian, Shanxi, Peoples R China
关键词
Corneal endothelium disease; In vivo confocal microscopy; Enhanced compact convolutional transformer; CONFOCAL MICROSCOPY; RISK-FACTORS; CYTOMEGALOVIRUS; PREVALENCE; GUTTATA; MORPHOLOGY; FEATURES; JAPAN;
D O I
10.1186/s40537-024-00913-w
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Purpose To use artificial intelligence to establish an automatic diagnosis system for corneal endothelium diseases (CEDs).Methods We develop an automatic system for detecting multiple common CEDs involving an enhanced compact convolutional transformer (ECCT). Specifically, we introduce a cross-head relative position encoding scheme into a standard self-attention module to capture contextual information among different regions and employ a token-attention feed-forward network to place greater focus on valuable abnormal regions.Results A total of 2723 images from CED patients are used to train our system. It achieves an accuracy of 89.53%, and the area under the receiver operating characteristic curve (AUC) is 0.958 (95% CI 0.943-0.971) on images from multiple centres.Conclusions Our system is the first artificial intelligence-based system for diagnosing CEDs worldwide. Images can be uploaded to a specified website, and automatic diagnoses can be obtained; this system can be particularly helpful under pandemic conditions, such as those seen during the recent COVID-19 pandemic.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Application of Artificial Intelligence in the Diagnosis and Management of Corneal Diseases
    Tahvildari, Maryam
    Singh, Rohan Bir
    Saeed, Hajirah N.
    [J]. SEMINARS IN OPHTHALMOLOGY, 2021, 36 (08) : 641 - 648
  • [2] Artificial intelligence and corneal diseases
    Kang, Linda
    Ballouz, Dena
    Woodward, Maria A.
    [J]. CURRENT OPINION IN OPHTHALMOLOGY, 2022, 33 (05) : 407 - 417
  • [3] Automatic Diagnosis of Cardiovascular Diseases Using Electrocardiogram Data and Artificial Intelligence Algorithms: A Systematic Review
    Cadena Vega, Roberto Mario
    Gorrostieta Hurtado, Efren
    Aceves Fernandez, Marco Antonio
    Ramos Arreguin, Juan Manuel
    [J]. TELEMATICS AND COMPUTING, WITCOM 2021, 2021, 1430 : 104 - 116
  • [4] Corneal biomechanics in early diagnosis of keratoconus using artificial intelligence
    Yan Huo
    Xuan Chen
    Gauhar Ali Khan
    Yan Wang
    [J]. Graefe's Archive for Clinical and Experimental Ophthalmology, 2024, 262 : 1337 - 1349
  • [5] Corneal biomechanics in early diagnosis of keratoconus using artificial intelligence
    Huo, Yan
    Chen, Xuan
    Khan, Gauhar Ali
    Wang, Yan
    [J]. GRAEFES ARCHIVE FOR CLINICAL AND EXPERIMENTAL OPHTHALMOLOGY, 2024, 262 (04) : 1337 - 1349
  • [6] Diagnosis of Diabetic Neuropathy by Artificial Intelligence using Corneal Confocal Microscopy
    Meng, Y.
    Ferdousi, M.
    Petropoulos, I. N.
    Malik, R. A.
    Zhao, Y.
    Alam, U.
    Zheng, Y.
    [J]. EUROPEAN JOURNAL OF OPHTHALMOLOGY, 2022, 32 (1_SUPPL) : 11 - 12
  • [7] Artificial Intelligence in Corneal Diagnosis: Where Are we?
    Bernardo T. Lopes
    Ashkan Eliasy
    Renato Ambrosio
    [J]. Current Ophthalmology Reports, 2019, 7 : 204 - 211
  • [8] Artificial Intelligence in Corneal Diagnosis: Where Are we?
    Lopes, Bernardo T.
    Eliasy, Ashkan
    Ambrosio Jr, Renato
    [J]. CURRENT OPHTHALMOLOGY REPORTS, 2019, 7 (03) : 204 - 211
  • [9] Automatic Grading System for Diabetic Retinopathy Diagnosis Using Deep Learning Artificial Intelligence Software
    Wang, Xiang-Ning
    Dai, Ling
    Li, Shu-Ting
    Kong, Hong-Yu
    Sheng, Bin
    Wu, Qiang
    [J]. CURRENT EYE RESEARCH, 2020, 45 (12) : 1550 - 1555
  • [10] Monitoring and Diagnosis for Automatic Activation of Reserve using Artificial Intelligence Techniques
    Vlad, Magdalena
    Cucu, Monica
    Frumuselu, Sorin
    Popovici, Razvan
    Popescu, Mihai Octavian
    Popescu, Claudia Laurenta
    [J]. 2013 8TH INTERNATIONAL SYMPOSIUM ON ADVANCED TOPICS IN ELECTRICAL ENGINEERING (ATEE), 2013,