Quasi-3D Refined Theory for Functionally Graded Porous Plates: Displacements and Stresses

被引:0
|
作者
A. M. Zenkour
机构
[1] King Abdulaziz University,Department of Mathematics, Faculty of Science
[2] Kafrelsheikh University,Department of Mathematics, Faculty of Science
来源
Physical Mesomechanics | 2020年 / 23卷
关键词
porous plates; functionally graded materials; refined theory; displacements; stresses;
D O I
暂无
中图分类号
学科分类号
摘要
This paper presents a higher-order shear and normal deformation theory for the static problem of functionally graded porous thick rectangular plates. The effect of thickness stretching in the functionally graded porous plates is taken into consideration. The functionally graded porous material properties vary through the plate thickness with a specific function. The governing equations are obtained via the virtual displacement principle. The static problem is solved for a simply supported plate under a sinusoidal load. The exact expressions for displacements and stresses are obtained. The influences of the functionally graded and porosity factors on the displacements and stresses of porous plates are discussed. Some validation examples are presented to show the accuracy of the present quasi-3D theory in predicting the bending response of porous plates. The effectiveness of the present model is evaluated by numerical results that include displacements and stresses of functionally graded porous plates. The field variables of functionally graded plates are very sensitive to the variation of the porosity factor.
引用
收藏
页码:39 / 53
页数:14
相关论文
共 50 条
  • [1] Quasi-3D Refined Theory for Functionally Graded Porous Plates: Displacements and Stresses
    Zenkour, A. M.
    [J]. PHYSICAL MESOMECHANICS, 2020, 23 (01) : 39 - 53
  • [2] Quasi-3D Refined Theory for Functionally Graded Porous Plates: Vibration Analysis
    A. M. Zenkour
    M. H. Aljadani
    [J]. Physical Mesomechanics, 2021, 24 : 243 - 256
  • [3] Quasi-3D Refined Theory for Functionally Graded Porous Plates:Vibration Analysis
    Zenkour, A. M.
    Aljadani, M. H.
    [J]. PHYSICAL MESOMECHANICS, 2021, 24 (03) : 243 - 256
  • [4] Buckling Response of Functionally Graded Porous Plates Due to a Quasi-3D Refined Theory
    Zenkour, Ashraf M.
    Aljadani, Maryam H.
    [J]. MATHEMATICS, 2022, 10 (04)
  • [5] A refined quasi-3D theory for the bending of functionally graded porous sandwich plates resting on elastic foundations
    Zenkour, Ashraf M.
    Alghanmi, Rabab A.
    [J]. THIN-WALLED STRUCTURES, 2022, 181
  • [6] A novel quasi-3D refined HSDT for static bending analysis of porous functionally graded Plates
    Slimani, Rachid
    Menasria, Abderrahmane
    Rachedi, Mohamed Ali
    Chitour, Mourad
    Refrafi, Salah
    Nimer, Ali Alselami
    Bouhadra, Abdelhakim
    Mamen, Belgacem
    [J]. JOURNAL OF COMPUTATIONAL APPLIED MECHANICS, 2024, 55 (03): : 519 - 537
  • [7] Bending of functionally graded plates via a refined quasi-3D shear and normal deformation theory
    Zenkour, Asharf M.
    Alghanmi, Rabab A.
    [J]. CURVED AND LAYERED STRUCTURES, 2018, 5 (01): : 190 - 200
  • [8] Buckling analysis of actuated functionally graded piezoelectric plates via a quasi-3D refined theory
    Zenkour, Ashraf M.
    Aljadani, Maryam H.
    [J]. MECHANICS OF MATERIALS, 2020, 151
  • [9] A quasi-3D refined theory for functionally graded single-layered and sandwich plates with porosities
    Zenkour, Ashraf M.
    [J]. COMPOSITE STRUCTURES, 2018, 201 : 38 - 48
  • [10] A quasi-3D hyperbolic shear deformation theory for functionally graded plates
    Thai, Huu-Tai
    Vo, Thuc P.
    Bui, Tinh Q.
    Nguyen, Trung-Kien
    [J]. ACTA MECHANICA, 2014, 225 (03) : 951 - 964