Faster distance-based representative skyline and k-center along pareto front in the plane

被引:0
|
作者
Sergio Cabello
机构
[1] Univerza v Ljubljani Fakulteta za matematiko in fiziko,
[2] Institute of Mathematics,undefined
[3] Physics and Mechanics,undefined
来源
关键词
Geometric optimization; Skyline; Pareto front; Clustering; -center;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the problem of computing the distance-based representative skyline in the plane, a problem introduced by Tao, Ding, Lin and Pei [Proc. 25th IEEE International Conference on Data Engineering (ICDE), 2009] and independently considered by Dupin, Nielsen and Talbi [Mathematics; Optimization and Learning - Third International Conference, OLA 2020] in the context of multi-objective optimization. Given a set P of n points in the plane and a parameter k, the task is to select k points of the skyline defined by P (also known as Pareto front for P) to minimize the maximum distance from the points of the skyline to the selected points. We show that the problem can be solved in O(nlogh)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n\log h)$$\end{document} time, where h is the number of points in the skyline of P. We also show that the decision problem can be solved in O(nlogk)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n\log k)$$\end{document} time and the optimization problem can be solved in O(nlogk+nloglogn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n \log k + n {{\,\textrm{loglog}\,}}n)$$\end{document} time. This improves previous algorithms and is optimal for a large range of values of k.
引用
收藏
页码:441 / 466
页数:25
相关论文
共 7 条
  • [1] Faster distance-based representative skyline and k-center along pareto front in the plane
    Cabello, Sergio
    JOURNAL OF GLOBAL OPTIMIZATION, 2023, 86 (02) : 441 - 466
  • [2] Distance-based Representative Skyline
    Tao, Yufei
    Ding, Ling
    Lin, Xuemin
    Pei, Jian
    ICDE: 2009 IEEE 25TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING, VOLS 1-3, 2009, : 892 - +
  • [3] Efficient distance-based representative skyline computation in 2D space
    Mao, Rui
    Cai, Taotao
    Li, Rong-Hua
    Yu, Jeffery Xu
    Li, Jianxin
    WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS, 2017, 20 (04): : 621 - 638
  • [4] Efficient distance-based representative skyline computation in 2D space
    Rui Mao
    Taotao Cai
    Rong-Hua Li
    Jeffery Xu Yu
    Jianxin Li
    World Wide Web, 2017, 20 : 621 - 638
  • [5] The Distance-Based Representative Skyline Calculation Using Unsupervised Extreme Learning Machines
    Bai, Mei
    Xin, Junchang
    Wang, Guoren
    Wang, Xite
    PROCEEDINGS OF ELM-2015, VOL 1: THEORY, ALGORITHMS AND APPLICATIONS (I), 2016, 6 : 107 - 119
  • [6] Efficient Algorithms for Distance-Based Representative Skyline Computation in 2D Space
    Cai, Taotao
    Li, Rong-Hua
    Yu, Jeffrey Xu
    Mao, Rui
    Cai, Yadi
    WEB TECHNOLOGIES AND APPLICATIONS (APWEB 2015), 2015, 9313 : 116 - 128
  • [7] A Distance Coefficient-based Algorithm for K-center Selection in Wireless Sensor Networks
    Sung, Tien-Wen
    Kong, Lingping
    Tsai, Pei-Wei
    Pan, Jeng-Shyang
    2017 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS - TAIWAN (ICCE-TW), 2017,