Quaternion matrix decomposition and its theoretical implications

被引:0
|
作者
Chang He
Bo Jiang
Xihua Zhu
机构
[1] Shanghai University of Finance and Economics,Research Institute for Interdisciplinary Sciences
[2] Shanghai University of Finance and Economics,Research Institute for Interdisciplinary Sciences, School of Information Management and Engineering
[3] Shanghai Business School,Faculty of Business Information
来源
关键词
Matrix rank-one decomposition; Quaternion; Joint numerical range; -Procedure; Quadratic optimization; 90C20; 90C30; 90C90; 65F30;
D O I
暂无
中图分类号
学科分类号
摘要
This paper proposes a novel matrix rank-one decomposition for quaternion Hermitian matrices, which admits a stronger property than the previous results in Ai W et al (Math Progr 128(1):253–283, 2011), Huang Y, Zhang S (Math Oper Res 32(3):758–768, 2007), Sturm JF, Zhang S (Math Oper Res 28(2):246–267 2003). The enhanced property can be used to drive some improved results in joint numerical range, S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {S}}$$\end{document}-Procedure and quadratically constrained quadratic programming (QCQP) in the quaternion domain, demonstrating the capability of our new decomposition technique.
引用
收藏
页码:741 / 758
页数:17
相关论文
共 50 条
  • [1] Quaternion matrix decomposition and its theoretical implications
    He, Chang
    Jiang, Bo
    Zhu, Xihua
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2023, 87 (2-4) : 741 - 758
  • [2] RANDOMIZED QUATERNION MATRIX UTV DECOMPOSITION AND ITS APPLICATIONS IN QUATERNION MATRIX OPTIMIZATION
    Xu, Renjie
    Wei, Yimin
    [J]. PACIFIC JOURNAL OF OPTIMIZATION, 2024, 20 (02): : 185 - 211
  • [3] Incremental quaternion singular value decomposition and its application for low rank quaternion matrix completion
    Xu, Yang
    Gao, Kaixin
    [J]. COMPUTATIONAL & APPLIED MATHEMATICS, 2024, 43 (06):
  • [4] Quaternion matrix singular value decomposition and its applications for color image processing
    Pei, SC
    Chang, JH
    Ding, JJ
    [J]. 2003 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL 1, PROCEEDINGS, 2003, : 805 - 808
  • [5] Jacobi method for quaternion matrix singular value decomposition
    Le Bihan, Nicolas
    Sangwine, Stephen J.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2007, 187 (02) : 1265 - 1271
  • [6] QR decomposition of dual quaternion matrix and blind watermarking scheme
    Zhang, Mingcui
    Li, Ying
    Wang, Tao
    Sun, Jianhua
    [J]. NUMERICAL ALGORITHMS, 2024,
  • [7] A complex structure-preserving algorithm for computing the singular value decomposition of a quaternion matrix and its applications
    Zhang, Dong
    Jiang, Tongsong
    Jiang, Chuan
    Wang, Gang
    [J]. NUMERICAL ALGORITHMS, 2024, 95 (01) : 267 - 283
  • [8] A complex structure-preserving algorithm for computing the singular value decomposition of a quaternion matrix and its applications
    Dong Zhang
    Tongsong Jiang
    Chuan Jiang
    Gang Wang
    [J]. Numerical Algorithms, 2024, 95 : 267 - 283
  • [9] On a Solution of the Quaternion Matrix Equation and Its Applications
    Jiang, Tongsong
    Ling, Sitao
    [J]. ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2013, 23 (03) : 689 - 699
  • [10] Algebraic method for LU decomposition of dual quaternion matrix and its corresponding structure-preserving algorithm
    Wang, Tao
    Li, Ying
    Wei, Musheng
    Xi, Yimeng
    Zhang, Mingcui
    [J]. NUMERICAL ALGORITHMS, 2024,