Promises and potential pitfalls of a 'cognitive neuroscience of mathematics learning'

被引:7
|
作者
Grabner R.H. [1 ]
Ansari D. [2 ]
机构
[1] Institute for Behavioral Sciences, Swiss Federal Institute of Technology (ETH) Zurich, 8092 Zurich, Universitätsstrasse 41
[2] Numerical Cognition Laboratory, Department of Psychology, University of Western Ontario, London
来源
ZDM | 2010年 / 42卷 / 6期
关键词
Cognitive Neuroscience; Mathematics Learning; Educational Researcher; Brain Mechanism; Numerical Magnitude;
D O I
10.1007/s11858-010-0283-4
中图分类号
学科分类号
摘要
The present commentary discusses the papers of the special issue on 'cognitive neuroscience and mathematics learning' with respect to methodological and theoretical constraints of using neuroscientific methods to study educationally relevant processes associated with mathematics learning. A special focus is laid on the relevance of subject populations, methodological limitations of current neuroimaging methods and theoretical questions concerning the relationship between the well-studied neural correlates of numerical magnitude processing and the less-investigated neural processes underlying higher level mathematical skills, such as algebraic reasoning. © FIZ Karlsruhe 2010.
引用
收藏
页码:655 / 660
页数:5
相关论文
共 50 条
  • [1] Probabilistic language models in cognitive neuroscience: Promises and pitfalls
    Armeni, Kristijan
    Willems, Roel M.
    Frank, Stefan L.
    [J]. NEUROSCIENCE AND BIOBEHAVIORAL REVIEWS, 2017, 83 : 579 - 588
  • [2] Potential applications of cognitive neuroscience to mathematics education
    De Smedt, Bert
    Grabner, Roland H.
    [J]. ZDM-MATHEMATICS EDUCATION, 2016, 48 (03): : 249 - 253
  • [3] Computational neuroscience across the lifespan: Promises and pitfalls
    van den Bos, Wouter
    Bruckner, Rasmus
    Nassar, Matthew R.
    Mata, Rui
    Eppinger, Ben
    [J]. DEVELOPMENTAL COGNITIVE NEUROSCIENCE, 2018, 33 : 42 - 53
  • [4] Promises and Pitfalls of the New Era of Computational Behavioral Neuroscience
    Schmidt, Mathias V.
    Koutsouleris, Nikolaos
    [J]. BIOLOGICAL PSYCHIATRY, 2021, 89 (09) : 845 - 846
  • [5] The application of computational models to social neuroscience: promises and pitfalls
    Charpentier, Caroline J.
    O'Doherty, John P.
    [J]. SOCIAL NEUROSCIENCE, 2018, 13 (06) : 637 - 647
  • [6] Pretense, Mathematics, and Cognitive Neuroscience
    Tallant, Jonathan
    [J]. BRITISH JOURNAL FOR THE PHILOSOPHY OF SCIENCE, 2013, 64 (04): : 817 - 835
  • [7] On the Idea of Learning Trajectories: Promises and Pitfalls
    Empson, Susan B.
    [J]. MATHEMATICS ENTHUSIAST, 2011, 8 (03): : 571 - +
  • [8] Cognitive neuroscience meets mathematics education
    De Smedt, Bert
    Ansari, Daniel
    Grabner, Roland H.
    Hannula, Minna M.
    Schneider, Michael
    Verschaffel, Lieven
    [J]. EDUCATIONAL RESEARCH REVIEW, 2010, 5 (01) : 97 - 105
  • [9] Applied cognitive neuroscience: Pitfalls of funding an ideology
    Chatterjee, G
    [J]. CURRENT SCIENCE, 2005, 89 (09): : 1454 - 1454
  • [10] An overview of Big Data: Promises and potential pitfalls
    Balzer, Laura B.
    [J]. INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2019, 60 (09)