The tensor product of function semimodules

被引:0
|
作者
Markus Banagl
机构
[1] Universität Heidelberg,Mathematisches Institut
来源
Algebra universalis | 2013年 / 70卷
关键词
Primary: 16Y60; Secondary: 15A69; 46S99; tensor product; function semimodules; semirings;
D O I
暂无
中图分类号
学科分类号
摘要
Given two domains of functions with values in a field, the canonical map from the algebraic tensor product of the vector spaces of functions on the two domains to the vector space of functions on the product of the two domains is well known to be injective, but not generally surjective. By constructing explicit examples, we show that the corresponding map for semimodules of semiring-valued functions is in general not even injective. This impacts the formulation of topological quantum field theories over semirings. We also confirm the failure of surjectivity for functions with values in complete, additively idempotent semirings by describing a large family of functions that do not lie in the image.
引用
收藏
页码:213 / 226
页数:13
相关论文
共 50 条
  • [1] The tensor product of function semimodules
    Banagl, Markus
    ALGEBRA UNIVERSALIS, 2013, 70 (03) : 213 - 226
  • [2] Some remarks on tensor products and flatness of semimodules
    Jawad Y. Abuhlail
    Semigroup Forum, 2014, 88 : 732 - 738
  • [3] Some remarks on tensor products and flatness of semimodules
    Abuhlail, Jawad Y.
    SEMIGROUP FORUM, 2014, 88 (03) : 732 - 738
  • [4] Some Properties of Tensor Products of Ternary Semimodules
    Mahasarakham, Thorranin Pawaputanon Na
    Sararnrakskul, Ruangvarin Intarawong
    Sirasuntorn, Nissara
    THAI JOURNAL OF MATHEMATICS, 2022, : 82 - 88
  • [5] ON BOUNDARY AND TENSOR PRODUCT OF FUNCTION ALGEBRAS
    FOX, AS
    CANADIAN MATHEMATICAL BULLETIN, 1966, 9 (01): : 103 - &
  • [6] Function spaces on tensor product of semigroups
    Rahimi, H.
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2011, 35 (A3): : 223 - 228
  • [7] Tensor products of idempotent semimodules. An algebraic approach
    Litvinov, GL
    Maslov, VP
    Shpiz, GB
    MATHEMATICAL NOTES, 1999, 65 (3-4) : 479 - 489
  • [8] Tensor products of idempotent semimodules. An algebraic approach
    G. L. Litvinov
    V. P. Maslov
    G. B. Shpiz
    Mathematical Notes, 1999, 65 : 479 - 489
  • [9] SOME REMARKS ON TENSOR PRODUCT OF FUNCTION RINGS
    HAGER, AW
    MATHEMATISCHE ZEITSCHRIFT, 1966, 92 (03) : 210 - &
  • [10] Estimation and detection of a function from tensor product spaces
    Ingster Yu.I.
    Suslina I.A.
    Journal of Mathematical Sciences, 2008, 152 (6) : 897 - 920