Fast two-qubit logic with holes in germanium

被引:0
|
作者
N. W. Hendrickx
D. P. Franke
A. Sammak
G. Scappucci
M. Veldhorst
机构
[1] QuTech,Kavli Institute of Nanoscience
[2] Delft University of Technology,undefined
[3] Delft University of Technology,undefined
[4] Netherlands Organisation for Applied Scientific Research (TNO),undefined
来源
Nature | 2020年 / 577卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Universal quantum information processing requires the execution of single-qubit and two-qubit logic. Across all qubit realizations1, spin qubits in quantum dots have great promise to become the central building block for quantum computation2. Excellent quantum dot control can be achieved in gallium arsenide3–5, and high-fidelity qubit rotations and two-qubit logic have been demonstrated in silicon6–9, but universal quantum logic implemented with local control has yet to be demonstrated. Here we make this step by combining all of these desirable aspects using hole quantum dots in germanium. Good control over tunnel coupling and detuning is obtained by exploiting quantum wells with very low disorder, enabling operation at the charge symmetry point for increased qubit performance. Spin–orbit coupling obviates the need for microscopic elements close to each qubit and enables rapid qubit control with driving frequencies exceeding 100 MHz. We demonstrate a fast universal quantum gate set composed of single-qubit gates with a fidelity of 99.3 per cent and a gate time of 20 nanoseconds, and two-qubit logic operations executed within 75 nanoseconds. Planar germanium has thus matured within a year from a material that can host quantum dots to a platform enabling two-qubit logic, positioning itself as an excellent material for use in quantum information applications.
引用
收藏
页码:487 / 491
页数:4
相关论文
共 50 条
  • [1] Fast two-qubit logic with holes in germanium
    Hendrickx, N. W.
    Franke, D. P.
    Sammak, A.
    Scappucci, G.
    Veldhorst, M.
    [J]. NATURE, 2020, 577 (7791) : 487 - +
  • [2] Two-qubit logic gate
    Noriaki Horiuchi
    [J]. Nature Photonics, 2015, 9 : 780 - 780
  • [3] A two-qubit logic gate in silicon
    Veldhorst, M.
    Yang, C. H.
    Hwang, J. C. C.
    Huang, W.
    Dehollain, J. P.
    Muhonen, J. T.
    Simmons, S.
    Laucht, A.
    Hudson, F. E.
    Itoh, K. M.
    Morello, A.
    Dzurak, A. S.
    [J]. NATURE, 2015, 526 (7573) : 410 - 414
  • [4] A two-qubit logic gate in silicon
    M. Veldhorst
    C. H. Yang
    J. C. C. Hwang
    W. Huang
    J. P. Dehollain
    J. T. Muhonen
    S. Simmons
    A. Laucht
    F. E. Hudson
    K. M. Itoh
    A. Morello
    A. S. Dzurak
    [J]. Nature, 2015, 526 : 410 - 414
  • [5] SILICON PHOTONICS Two-qubit logic gate
    Horiuchi, Noriaki
    [J]. NATURE PHOTONICS, 2015, 9 (12) : 780 - 780
  • [6] Single-photon two-qubit logic gates
    Fiorentino, M
    Kim, T
    Wong, FNC
    [J]. QUANTUM COMMUNICATION, MEASUREMENT AND COMPUTING, 2004, 734 : 211 - 214
  • [7] Two-qubit quantum logic gate in molecular magnets
    Hou, JM
    Tian, LJ
    Ge, ML
    [J]. CHINESE PHYSICS LETTERS, 2005, 22 (09) : 2147 - 2150
  • [8] Silicon photonic processor of two-qubit entangling quantum logic
    Santagati, R.
    Silverstone, J. W.
    Strain, M. J.
    Sorel, M.
    Miki, S.
    Yamashita, T.
    Fujiwara, M.
    Sasaki, M.
    Terai, H.
    Tanner, M. G.
    Natarajan, C. M.
    Hadfield, R. H.
    O'Brien, J. L.
    Thompson, M. G.
    [J]. JOURNAL OF OPTICS, 2017, 19 (11)
  • [9] A SCHEME FOR REALIZATION OF TWO-QUBIT LOGIC GATES IN CAVITY QED
    Fang, Bao-Long
    Wan, Hong-Bo
    Ye, Liu
    [J]. MODERN PHYSICS LETTERS B, 2010, 24 (01): : 59 - 64
  • [10] Fast nonadiabatic two-qubit gates for the Kane quantum computer
    Hill, CD
    Goan, HS
    [J]. PHYSICAL REVIEW A, 2003, 68 (01):