Mach and Reynolds number effects on transonic buffet on the XRF-1 transport aircraft wing at flight Reynolds number

被引:0
|
作者
Andreas Waldmann
Maximilian C. Ehrle
Johannes Kleinert
Daisuke Yorita
Thorsten Lutz
机构
[1] University of Stuttgart,Institute of Aerodynamics and Gas Dynamics
[2] German Aerospace Center (DLR),Institute of Aerodynamics and Flow Technology
来源
Experiments in Fluids | 2023年 / 64卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
This work provides an overview of aerodynamic data acquired in the European Transonic Windtunnel using an XRF-1 transport aircraft configuration both at cruise conditions and at the edges of the flight envelope. The goals and design of the wind tunnel test were described, highlighting the use of the cryogenic wind tunnel’s capability to isolate the effects of M∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_{\infty }$$\end{document}, Re∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{Re}}_{\infty }$$\end{document} and the dynamic pressure q/E. The resulting dataset includes an aerodynamic baseline characterization of the full span model with vertical and horizontal tailplanes and without engine nacelles. The effects of different inflow conditions were studied using data from continuous polars, evaluating the changes in aeroelastic deformation which are proportional to q/E and the influence of M∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_{\infty }$$\end{document} and Re∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{Re}}_{\infty }$$\end{document} on the shock position. Off-design data was analyzed at the lowest and highest measured Mach numbers of 0.84 and 0.90, respectively. Wing lower surface flow and underside shock motion was analyzed at negative angles of attack using cp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{c}_{\text{p}}}$$\end{document} distribution and unsteady pressure transducer fluctuation data, identifying significant upstream displacement of the shock close to the leading edge. Wing upper-side flow and the shock motion near buffet onset and beyond was analyzed using unsteady pressure data from point transducers and unsteady pressure-sensitive paint (PSP) measurements. Buffet occurs at lower angles of attack at high Mach number, and without clearly defined lift break. Spectral contents at the acquired data points in the buffet range suggest broadband fluctuations at Strouhal numbers between 0.2 and 0.6, which is consistent with recent literature. The spanwise shock propagation velocities were determined independently via analysis of unsteady PSP and pressure transducers to be in the range between us/u∞=0.24\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_{\text{s}} / u_{\infty } = 0.24$$\end{document} and 0.32, which is similarly in line with published datasets using other swept wing aircraft models.
引用
收藏
相关论文
共 50 条
  • [1] Mach and Reynolds number effects on transonic buffet on the XRF-1 transport aircraft wing at flight Reynolds number
    Waldmann, Andreas
    Ehrle, Maximilian C.
    Kleinert, Johannes
    Yorita, Daisuke
    Lutz, Thorsten
    EXPERIMENTS IN FLUIDS, 2023, 64 (05)
  • [2] Transonic Buffet in Flow Past a Low-Reynolds-Number Airfoil
    Jia, Boyang
    Li, Weipeng
    Bae, H. Jane
    JOURNAL OF AEROSPACE ENGINEERING, 2024, 37 (06)
  • [3] Effect of underwing frost on a transport aircraft airfoil at flight Reynolds number
    Bragg, M.B.
    Heinrich, D.C.
    Valarezo, W.O.
    McGhee, R.J.
    1600, AIAA, Washington, DC, United States (31):
  • [4] Investigation of Reynolds Number Effects on Aerodynamic Characteristics of a Transport Aircraft
    Wang, Yuanjing
    Liu, Dawei
    Xu, Xin
    Li, Guoshuai
    AEROSPACE, 2021, 8 (07)
  • [5] Global Stability Analysis of Full-Aircraft Transonic Buffet at Flight Reynolds Numbers
    Sansica, Andrea
    Hashimoto, Atsushi
    AIAA JOURNAL, 2023, 61 (10) : 4437 - 4455
  • [6] EFFECT OF UNDERWING FROST ON A TRANSPORT AIRCRAFT AIRFOIL AT FLIGHT REYNOLDS-NUMBER
    BRAGG, MB
    HEINRICH, DC
    VALAREZO, WO
    MCGHEE, RJ
    JOURNAL OF AIRCRAFT, 1994, 31 (06): : 1372 - 1379
  • [7] EFFECTS OF KINEMATICS ON LOW REYNOLDS NUMBER WING
    Mojgani, Rambod
    Tadjfar, Mehran
    PROCEEDINGS OF THE ASME FLUIDS ENGINEERING DIVISION SUMMER MEETING, 2013, VOL 1A: SYMPOSIA, 2014,
  • [8] Reynolds Number and Mach Number Effects on the Shock-Induced Separation
    Zuo, Feng-Yuan
    Shen, Yu
    Wei, Jia-Rui
    Hu, Shu-Ling
    AIAA JOURNAL, 2024, 62 (04) : 1618 - 1625
  • [9] SIMULATION ON AN INCREASED REYNOLDS NUMBER BY ROUGHNESS ON AIRCRAFT MODELS IN TRANSONIC FLOW
    VAUCHERET, X
    RECHERCHE AEROSPATIALE, 1971, (06): : 335 - +
  • [10] Mach and Reynolds Number Effects on the Wake Properties of Microramps
    Giepman, Rogier H. M.
    Srivastava, Aabhas
    Schrijer, Ferry F. J.
    van Oudheusden, Bas W.
    AIAA JOURNAL, 2016, 54 (11) : 3481 - 3494