On the Derivative Counting Processes of First- and Second-order Aggregated Semi-Markov Systems

被引:0
|
作者
He Yi
Lirong Cui
Narayanaswamy Balakrishnan
机构
[1] Beijing University of Chemical Technology,School of Economics and Management
[2] Qingdao University,College of Quality and Standardization
[3] McMaster University,Department of Mathematics and Statistics
关键词
Semi-Markov system; First-order; Second-order; Imperfect functioning state; Counting process; 60K15; 60G55; 60K20;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, first- and second-order discrete-time semi-Markov systems are considered with their finite state space divided into three subsets as perfect functioning states, imperfect functioning states and failure states, respectively. The counting processes for one-step increasing transitions, one-step equivalent transitions and one-step decreasing transitions in working/failure periods are defined and investigated in detail. Formulas for related distributions, joint distributions, expectations, generating functions and joint generation functions are derived in their Z-transforms. Numerical examples are presented to illustrate the results established. Extended discussions on related reliability measures are also considered. Finally, some concluding remarks and discussions are presented. Applications of the results presented here can be found in different fields such as seismology, reliability, biology and finance.
引用
收藏
页码:1849 / 1875
页数:26
相关论文
共 50 条
  • [1] On the Derivative Counting Processes of First- and Second-order Aggregated Semi-Markov Systems
    Yi, He
    Cui, Lirong
    Balakrishnan, Narayanaswamy
    METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2022, 24 (03) : 1849 - 1875
  • [2] New reliability indices for first- and second-order discrete-time aggregated semi-Markov systems with an application to TT&C system
    Yi, He
    Cui, Lirong
    Balakrishnan, Narayanaswamy
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2021, 215
  • [3] Distribution and availability for aggregated second-order semi-Markov ternary system with working time omission
    Yi, He
    Cui, Lirong
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2017, 166 : 50 - 60
  • [4] Second Order Optimality in Markov and Semi-Markov Decision Processes
    Sladky, Karel
    37TH INTERNATIONAL CONFERENCE ON MATHEMATICAL METHODS IN ECONOMICS 2019, 2019, : 338 - 343
  • [5] COHERENT FIELD DYNAMICS IN FIRST- AND SECOND-ORDER PROCESSES
    BERGMANN, SM
    PHYSICAL REVIEW, 1968, 166 (02): : 382 - &
  • [6] On the limit distribution of a second-order semi-Markov chain in state and duration
    D'Amico, Guglielmo
    Petroni, Filippo
    Prattico, Flavio
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (12) : 5994 - 5999
  • [7] Gaslighting, First- and Second-Order
    Catapang Podosky, Paul-Mikhail
    HYPATIA-A JOURNAL OF FEMINIST PHILOSOPHY, 2021, 36 (01): : 207 - 227
  • [8] First and second order semi-Markov chains for wind speed modeling
    D'Amico, Guglielmo
    Petroni, Filippo
    Prattico, Flavio
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2013, 392 (05) : 1194 - 1201
  • [9] ANOTHER RELATIONSHIP BETWEEN FIRST- AND SECOND-ORDER SYSTEMS
    Bizdadea, C.
    Barcan, M. M.
    Cioroianu, E. M.
    Miauta, M. T.
    Saliu, S. O.
    ROMANIAN JOURNAL OF PHYSICS, 2013, 58 (5-6): : 428 - 433
  • [10] Joint statistics of combined first- and second-order random processes
    McWilliam, S
    PROBABILISTIC ENGINEERING MECHANICS, 2004, 19 (1-2) : 145 - 154