Vector variational principle

被引:0
|
作者
Ewa M. Bednarczuk
Dariusz Zagrodny
机构
[1] Cardinal Stefan Wyszyński University,Systems Research Institute
[2] Polish Academy of Sciences,undefined
来源
Archiv der Mathematik | 2009年 / 93卷
关键词
58E30; 58E17; 65K10; Vector variational principle; Countably orderable sets; Németh approximate solutions; Ekeland’s variational principle;
D O I
暂无
中图分类号
学科分类号
摘要
We prove an Ekeland’s type vector variational principle for monotonically semicontinuous mappings with perturbations given by a convex bounded subset of directions multiplied by the distance function. This generalizes the existing results where directions of perturbations are singletons.
引用
收藏
页码:577 / 586
页数:9
相关论文
共 50 条
  • [1] Vector variational principle
    Bednarczuk, Ewa M.
    Zagrodny, Dariusz
    [J]. ARCHIV DER MATHEMATIK, 2009, 93 (06) : 577 - 586
  • [2] A SMOOTH VECTOR VARIATIONAL PRINCIPLE
    Bednarczuk, Ewa M.
    Zagrodny, Dariusz
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2010, 48 (06) : 3735 - 3745
  • [3] Generalized Variational Principle and Vector Optimization
    J. Zhu
    C. K. Zhong
    Y. J. Cho
    [J]. Journal of Optimization Theory and Applications, 2000, 106 : 201 - 217
  • [4] A variational principle for vector equilibrium problems
    K. R. Kazmi
    [J]. Proceedings of the Indian Academy of Sciences - Mathematical Sciences, 2001, 111 : 465 - 470
  • [5] A variational principle for vector equilibrium problems
    Kazmi, KR
    [J]. PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2001, 111 (04): : 465 - 470
  • [6] Borwein–Preiss vector variational principle
    A. Y. Kruger
    S. Plubtieng
    T. Seangwattana
    [J]. Positivity, 2017, 21 : 1273 - 1292
  • [7] Generalized variational principle and vector optimization
    Zhu, J
    Zhong, CK
    Cho, YJ
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2000, 106 (01) : 201 - 217
  • [8] LINEAR VARIATIONAL PRINCIPLE FOR CONVEX VECTOR MAXIMIZATION
    Semenov, V. V.
    [J]. CYBERNETICS AND SYSTEMS ANALYSIS, 2007, 43 (02) : 246 - 252
  • [9] Borwein-Preiss vector variational principle
    Kruger, A. Y.
    Plubtieng, S.
    Seangwattana, T.
    [J]. POSITIVITY, 2017, 21 (04) : 1273 - 1292
  • [10] A smooth variational principle for vector optimization problems
    Gopfert, A
    Henkel, EC
    Tammer, C
    [J]. RECENT DEVELOPMENTS IN OPTIMIZATION, 1995, 429 : 142 - 154