Hermitian Yang–Mills connections on pullback bundles

被引:0
|
作者
Lars Martin Sektnan
Carl Tipler
机构
[1] University of Gothenburg,Department of Mathematical Sciences
[2] Aarhus University,Institut for Matematik
[3] Université de Brest,Laboratoire de Mathématiques de Bretagne Atlantique, UMR CNRS 6205
关键词
53C07; 53C55; 14J60;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate hermitian Yang–Mills connections on pullback bundles with respect to adiabatic classes on the total space of holomorphic submersions with connected fibres. Under some technical assumptions on the graded object of a Jordan–Hölder filtration, we obtain a necessary and sufficient criterion for when the pullback of a strictly semistable vector bundle will carry an hermitian Yang–Mills connection, in terms of intersection numbers on the base of the submersion. Together with the classical Donaldson–Uhlenbeck–Yau correspondence, we deduce that the pullback of a stable (resp. unstable) bundle remains stable (resp. unstable) for adiabatic classes, and settle the semi-stable case.
引用
收藏
相关论文
共 50 条