Dolbeault cohomology of compact nilmanifolds

被引:0
|
作者
S. Console
A. Fino
机构
[1] Università di Torino,Dipartimento di Mathematica
来源
Transformation Groups | 2001年 / 6卷
关键词
Modulus Space; Topological Group; Spectral Sequence; Invariant Complex; Dolbeault Cohomology;
D O I
暂无
中图分类号
学科分类号
摘要
LetM=G/Γ be a compact nilmanifold endowed with an invariant complex structure. We prove that on an open set of any connected component of the moduli space\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{C}\left( \mathfrak{g} \right)$$ \end{document} of invariant complex structures onM, the Dolbeault cohomology ofM is isomorphic to the cohomology of the differential bigraded algebra associated to the complexification\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathfrak{g}^\mathbb{C} $$ \end{document} of the Lie algebra ofG. to obtain this result, we first prove the above isomorphism for compact nilmanifolds endowed with a rational invariant complex structure. This is done using a descending series associated to the complex structure and the Borel spectral sequences for the corresponding set of holomorphic fibrations. Then we apply the theory of Kodaira-Spencer for deformations of complex structures.
引用
收藏
页码:111 / 124
页数:13
相关论文
共 50 条
  • [1] Dolbeault cohomology of compact nilmanifolds
    Console, S
    Fino, A
    [J]. TRANSFORMATION GROUPS, 2001, 6 (02) : 111 - 124
  • [2] Compact nilmanifolds with nilpotent complex structures:: Dolbeault cohomology
    Cordero, LA
    Fernández, M
    Gray, A
    Ugarte, L
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 352 (12) : 5405 - 5433
  • [3] DOLBEAULT COHOMOLOGY OF COMPLEX NILMANIFOLDS FOLIATED IN TOROIDAL GROUPS
    Fino, Anna
    Rollenske, Soenke
    Ruppenthal, Jean
    [J]. QUARTERLY JOURNAL OF MATHEMATICS, 2019, 70 (04): : 1265 - 1279
  • [4] Dolbeault cohomology of nilmanifolds with left-invariant complex structure
    Rollenske, Soenke
    [J]. COMPLEX AND DIFFERENTIAL GEOMETRY, 2011, 8 : 369 - 392
  • [5] Lie-algebra Dolbeault-cohomology and small deformations of nilmanifolds
    Rollenske, Soenke
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2009, 79 : 346 - 362
  • [6] Dolbeault cohomology of compact complex homogeneous manifolds
    Ramani V.
    Sankaran P.
    [J]. Proceedings of the Indian Academy of Sciences - Mathematical Sciences, 1999, 109 (1): : 11 - 21
  • [7] Dolbeault cohomology of compact complex homogeneous manifolds
    [J]. Proc Indian Acad Sci Math Sci, 1 (11-21):
  • [8] Dolbeault cohomology of compact complex homogeneous manifolds
    Ramani, W
    Sankaran, P
    [J]. PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 1999, 109 (01): : 11 - 21
  • [10] Cohomology of Nilmanifolds
    Angella, Daniele
    [J]. COHOMOLOGICAL ASPECTS IN COMPLEX NON-KAHLER GEOMETRY, 2014, 2095 : 95 - 150