k-Generalized Pell Numbers Which are Concatenation of Two Repdigits

被引:0
|
作者
Zafer Şiar
Refik Keskin
机构
[1] Bingöl University,Department of Mathematics
[2] Sakarya University,Department of Mathematics
来源
关键词
Repdigit; Fibonacci and Lucas numbers; exponential diophantine equations; linear forms in logarithms; Baker’s method; 11B39; 11D61; 11J86;
D O I
暂无
中图分类号
学科分类号
摘要
Let k≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 2$$\end{document} and let (Pn(k))n≥2-k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(P_{n}^{(k)})_{n\ge 2-k}$$\end{document} be the k-generalized Pell sequence defined by Pn(k)=2Pn-1(k)+Pn-2(k)+⋯+Pn-k(k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} P_{n}^{(k)}=2P_{n-1}^{(k)}+P_{n-2}^{(k)}+\cdots +P_{n-k}^{(k)} \end{aligned}$$\end{document}for n≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 2$$\end{document} with initial conditions P-(k-2)(k)=P-(k-3)(k)=⋯=P-1(k)=P0(k)=0,P1(k)=1.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} P_{-(k-2)}^{(k)}=P_{-(k-3)}^{(k)}=\cdots =P_{-1}^{(k)}=P_{0}^{(k)}=0,P_{1}^{(k)}=1. \end{aligned}$$\end{document}In this paper, we show that 12, 13, 29, 33, 34, 70, 84, 88, 89, 228,  and 233 are the only k-generalized Pell numbers, which are concatenation of two repdigits with at least two digits.
引用
收藏
相关论文
共 50 条
  • [1] k-Generalized Pell Numbers Which are Concatenation of Two Repdigits
    Siar, Zafer
    Keskin, Refik
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2022, 19 (04)
  • [2] k-generalized Pell numbers which are repdigits in base b
    Siar, Zafer
    Keskin, Refik
    [J]. TURKISH JOURNAL OF MATHEMATICS, 2022, 46 (08) : 3083 - 3094
  • [3] Associated Pell numbers which are repdigits or concatenation of two repdigits
    Rayaguru S.G.
    Panda G.K.
    Şiar Z.
    [J]. Boletín de la Sociedad Matemática Mexicana, 2021, 27 (2)
  • [4] k-GENERALIZED FIBONACCI NUMBERS WHICH ARE CONCATENATIONS OF TWO REPDIGITS
    Alahmadi, Adel
    Altassan, Alaa
    Luca, Florian
    Shoaib, Hatoon
    [J]. GLASNIK MATEMATICKI, 2021, 56 (01) : 29 - 46
  • [5] Balancing numbers which are concatenation of two repdigits
    Sai Gopal Rayaguru
    Gopal Krishna Panda
    [J]. Boletín de la Sociedad Matemática Mexicana, 2020, 26 : 911 - 919
  • [6] Balancing numbers which are concatenation of two repdigits
    Rayaguru, Sai Gopal
    Panda, Gopal Krishna
    [J]. BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2020, 26 (03): : 911 - 919
  • [7] On Repdigits Which are Sums or Differences of Two k-Pell Numbers
    Faye, Mariama Ndao
    Rihane, Salah Eddine
    Togbe, Alain
    [J]. MATHEMATICA SLOVACA, 2023, 73 (06) : 1409 - 1422
  • [8] On the sum of the reciprocals of k-generalized Pell numbers
    Normenyo, Benedict Vasco
    [J]. INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2023,
  • [9] PELL AND PELL-LUCAS NUMBERS WHICH ARE CONCATENATIONS OF TWO REPDIGITS
    Duman, Merve Guney
    Erduvan, Fatih
    [J]. HONAM MATHEMATICAL JOURNAL, 2023, 45 (04): : 572 - 584
  • [10] On the x-coordinates of Pell equations which are k-generalized Fibonacci numbers
    Ddamulira, Mahadi
    Luca, Florian
    [J]. JOURNAL OF NUMBER THEORY, 2020, 207 : 156 - 195