A note on the preemptive scheduling to minimize total completion time with release time and deadline constraints

被引:0
|
作者
Long Wan
Jinjiang Yuan
Zhichao Geng
机构
[1] Jiangxi University of Finance and Economics,School of Information Technology
[2] Zhengzhou University Zhengzhou,School of Mathematics and Statistics
来源
Journal of Scheduling | 2015年 / 18卷
关键词
Preemptive scheduling; Release time; Deadline; NP-hard; 90B35; 90C27;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider two problems about the preemptive scheduling of a set of jobs with release times on a single machine. In the first problem, each job has a deadline. The objective is to find a feasible schedule which minimizes the total completion time of the jobs. In the second problem (called two-agent scheduling problem), the set of jobs is partitioned into two subsets J(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{J}^{(1)}$$\end{document} and J(2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{J}^{(2)}$$\end{document}. Each job in J(2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{J}^{(2)}$$\end{document} has a deadline. The objective is to find a feasible schedule which minimizes the total completion time of the jobs in J(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{J}^{(1)}$$\end{document}. For the first problem, Du and Leung (Journal of Algorithms 14:45–68, 1993) showed that the problem is NP-hard. We show in this paper that there is a flaw in their NP-hardness proof. For the second problem, Leung et al. (Operations Research 58:458–469, 2010) showed that the problem can be solved in polynomial time. Yuan et al. (Private Communication) showed that their polynomial-time algorithm is invalid so the complexity of the second problem is still open. In this paper, by a modification of Du and Leung’s NP-hardness proof, we show that the first problem is NP-hard even when the jobs have only two distinct deadlines. Using the same reduction, we also show that the second problem is NP-hard even when the jobs in J(2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{J}^{(2)}$$\end{document} has a common deadline D>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D>0$$\end{document} and a common release time 0.
引用
收藏
页码:315 / 323
页数:8
相关论文
共 50 条