Transcendental values of class group L-functions

被引:0
|
作者
M. Ram Murty
V. Kumar Murty
机构
[1] Queen’s University,Department of Mathematics
[2] University of Toronto,Department of Mathematics
来源
Mathematische Annalen | 2011年 / 351卷
关键词
Class Group; Algebraic Number; Dirichlet Series; Irreducible Character; Ideal Class;
D O I
暂无
中图分类号
学科分类号
摘要
Let K be an algebraic number field and f a complex-valued function on the ideal class group of K. Then, f extends in a natural way to the set of all non-zero ideals of the ring of integers of K and we can consider the Dirichlet series \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L(s,f) =\sum_{{\mathfrak a}} f({\mathfrak a}){\bf N}({\mathfrak a})^{-s}}$$\end{document} which converges for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathfrak R}(s) >1 }$$\end{document}. After extending this function to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathfrak R}(s)=1}$$\end{document}, and in the case that f does not contain the trivial character, we study the special value L(1, f) when f is algebraic valued and K is an imaginary quadratic field. Applying Kronecker’s limit formula and Baker’s theory of linear forms in logarithms, we derive a variety of results related to the transcendence of this special value.
引用
收藏
页码:835 / 855
页数:20
相关论文
共 50 条
  • [1] Transcendental values of class group L-functions
    Murty, M. Ram
    Murty, V. Kumar
    [J]. MATHEMATISCHE ANNALEN, 2011, 351 (04) : 835 - 855
  • [2] TRANSCENDENTAL VALUES OF CLASS GROUP L-FUNCTIONS, II
    Murty, M. Ram
    Murty, V. Kumar
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 140 (09) : 3041 - 3047
  • [3] Transcendental Nature of Special Values of L-Functions
    Gun, Sanoli
    Murty, M. Ram
    Rath, Purusottam
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2011, 63 (01): : 136 - 152
  • [4] Special Values of Class Group L-Functions for CM Fields
    Masri, Riad
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2010, 62 (01): : 157 - 181
  • [5] CLASS GROUP L-FUNCTIONS
    DUKE, W
    FRIEDLANDER, J
    IWANIEC, H
    [J]. DUKE MATHEMATICAL JOURNAL, 1995, 79 (01) : 1 - 56
  • [6] Large values of Dirichlet L-functions at zeros of a class of L-functions
    Li, Junxian
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2021, 73 (06): : 1459 - 1505
  • [7] CLASS NUMBER AND THE SPECIAL VALUES OF L-FUNCTIONS
    Goral, Haydar
    [J]. MATHEMATICAL REPORTS, 2022, 24 (04): : 693 - 701
  • [8] THE CUSPIDAL GROUP AND SPECIAL VALUES OF L-FUNCTIONS
    STEVENS, G
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 291 (02) : 519 - 550
  • [9] The universality theorem for class group L-functions
    Mishou, Hidehiko
    [J]. ACTA ARITHMETICA, 2011, 147 (02) : 115 - 128
  • [10] Large values of L-functions from the Selberg class
    Aistleitner, Christoph
    Pankowski, Lukasz
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 446 (01) : 345 - 364