Set-valued solutions of a two-variable functional equation with involutions

被引:0
|
作者
Iz-iddine EL-Fassi
Kazimierz Nikodem
Dorian Popa
机构
[1] Sidi Mohamed Ben Abdellah University,Department of Mathematics, Faculty of Sciences and Techniques
[2] University of Bielsko-Biala,Department of Mathematics
[3] Technical University Cluj-Napoca,Department of Mathematics
来源
Aequationes mathematicae | 2022年 / 96卷
关键词
Set-valued maps; Functional equation; Involution; Hausdorff topological vector space; 54C60; 65Q20; 52A07;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, we give some characterizations or representations of set-valued solutions defined on a commutative monoid (M,+)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(M,+)$$\end{document} with values in a Hausdorff topological vector space of the following two-variable functional equation with involutions: F(x+y,z+w)+F(x+σ(y),z+τ(w))=αF(x,z)+βF(y,w),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} F(x+y,z+w)+F(x+\sigma (y),z+\tau (w)) =\alpha F(x,z)+\beta F(y,w), \end{aligned}$$\end{document}where α,β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha ,\;\beta $$\end{document} are fixed nonnegative real numbers and σ,τ:M→M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma ,\tau : M\rightarrow M$$\end{document} are involutions (i.e.,σ(x+y)=σ(x)+σ(y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma (x+y)=\sigma (x)+\sigma (y)$$\end{document} and σ∘σ(x)=x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma \circ \sigma (x)=x$$\end{document} for all x,y∈M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x,y\in M$$\end{document}).
引用
收藏
页码:453 / 464
页数:11
相关论文
共 50 条
  • [1] Set-valued solutions of a two-variable functional equation with involutions
    EL-Fassi, Iz-Iddine
    Nikodem, Kazimierz
    Popa, Dorian
    [J]. AEQUATIONES MATHEMATICAE, 2022, 96 (02) : 453 - 464
  • [2] Set-valued solutions of a functional equation
    Krzysztof Ciepliński
    [J]. Boletín de la Sociedad Matemática Mexicana, 2022, 28
  • [3] Set-valued solutions of a functional equation
    Cieplinski, Krzysztof
    [J]. BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2022, 28 (02):
  • [4] On set-valued solutions of a functional equation of Drygas
    Smajdor, Wilhelmina
    [J]. AEQUATIONES MATHEMATICAE, 2009, 77 (1-2) : 89 - 97
  • [5] On set-valued solutions of a functional equation of Drygas
    Wilhelmina Smajdor
    [J]. Aequationes mathematicae, 2009, 77 : 89 - 97
  • [6] New characterizations of the set-valued solutions for a class of functional equations with involutions
    Iz. EL-Fassi
    K. Nikodem
    [J]. Acta Mathematica Hungarica, 2022, 168 : 386 - 401
  • [7] New characterizations of the set-valued solutions for a class of functional equations with involutions
    EL-Fassi, Iz
    Nikodem, K.
    [J]. ACTA MATHEMATICA HUNGARICA, 2022, 168 (02) : 386 - 401
  • [8] Set-Valued Solutions of a Generalized Quadratic Functional Equation
    Alina Ramona Baias
    Bianca Moşneguţu
    Dorian Popa
    [J]. Results in Mathematics, 2018, 73
  • [9] Set-Valued Solutions of a Generalized Quadratic Functional Equation
    Baias, Alina Ramona
    Mosnegutu, Bianca
    Popa, Dorian
    [J]. RESULTS IN MATHEMATICS, 2018, 73 (04)
  • [10] Set-Valued Solutions of a Generalized Popoviciu Functional Equation
    Mohammadi, Elham
    Najati, Abbas
    Nikodem, Kazimierz
    [J]. RESULTS IN MATHEMATICS, 2024, 79 (07)