This paper deals with the approximate controllability problem for a parabolic equation defined for \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$x \in \mathbb{R},{\text{ }}t \in \;[0,T]$$
\end{document}. It is possible to find a sequence of initial conditions with given compact support such that traces at \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$x = 0$$
\end{document} of corresponding solutions converge to the trace of a given solution. We obtain estimates of the rate of this convergence. These estimates are constructed in terms of eigenvalues of certain compact operator.
机构:
St. Petersburg State University for Architecture and Civil Engineering, St. PetersburgSt. Petersburg State University for Architecture and Civil Engineering, St. Petersburg
机构:
Univ Tecn Lisboa, CEMAPRE, ISEG, P-1200781 Lisbon, Portugal
Univ Tras Os Montes & Alto Douro, Dept Math, P-5001801 Vila Real, PortugalUniv Tecn Lisboa, CEMAPRE, ISEG, P-1200781 Lisbon, Portugal