Study of Heat Transport in a Porous Medium Under G-jitter and Internal Heating Effects

被引:0
|
作者
B. S. Bhadauria
I. Hashim
P. G. Siddheshwar
机构
[1] School for Physical Sciences,Department of Applied Mathematics
[2] Babasaheb Bhimrao Ambedkar University,School of Mathematical Sciences, Faculty of Science and Technology
[3] Universiti Kebangsaan Malaysia,Department of Mathematics
[4] Bangalore University,undefined
[5] Central College Campus,undefined
来源
Transport in Porous Media | 2013年 / 96卷
关键词
Non-linear stability analysis; Ginzburg–Landau equation; Gravity modulation; Internal heating;
D O I
暂无
中图分类号
学科分类号
摘要
In this article we study the combined effect of internal heating and time-periodic gravity modulation on thermal instability in a closely packed anisotropic porous medium, heated from below and cooled from above. The time-periodic gravity modulation, considered in this problem can be realized by vertically oscillating the porous medium. A weak non-linear stability analysis has been performed by using power series expansion in terms of the amplitude of gravity modulation, which is assumed to be small. The Nusselt number has been obtained in terms of the amplitude of convection which is governed by the non-autonomous Ginzburg–Landau equation derived for the stationary mode of convection. The effects of various parameters such as; internal Rayleigh number, amplitude and frequency of gravity modulation, thermo-mechanical anisotropies, and Vadász number on heat transport has been analyzed. It is found that the response of the convective system to the internal Rayleigh number is destabilizing. Further it is found that the heat transport can also be controlled by suitably adjusting the external parameters of the system.
引用
收藏
页码:21 / 37
页数:16
相关论文
共 50 条