Finite element analysis of micromechanical failure modes in a heterogeneous ceramic material system

被引:0
|
作者
J. Zhai
M. Zhou
机构
[1] Georgia Institute of Technology,The George W. Woodruff School of Mechanical Engineering
来源
关键词
Micromechanical modeling; cohesive force; fracture; heterogeneous materials; elasticity; fracture modes; failure modes; numerical simulation; crack propagation; ceramic composites.;
D O I
暂无
中图分类号
学科分类号
摘要
A micromechanical model that provides explicit accounts for arbitrary microstructures and arbitrary fracture patterns is developed and used. The approach uses both a constitutive law for the bulk solid constituents and a constitutive law for fracture surfaces. The model is based on a cohesive surface formulation of Xu and Needleman and represents a phenomenological characterization for atomic forces on potential crack/microcrack surfaces. This framework of analysis does not require the use of continuum fracture criteria which assume, for example, the existence of K-fields. Numerical analyses carried out concern failure in the forms of crack propagation and microcrack formation. Actual microstructures of brittle alumina/titanium diboride (Al2O3/TiB2) composites are used. The results demonstrate the effects of microstructure and material inhomogeneities on the selection of failure modes in this material system. For example, the strength of interfaces between the phases is found to significantly influence the failure characteristics. When weak interfacial strength exists, interfacial debonding and microcrack initiation and growth are the principal mode of failure. When strong interfacial strength is derived from material processing, advancement of a dominant crack and crack branching are observed.
引用
收藏
页码:161 / 180
页数:19
相关论文
共 50 条
  • [1] Finite element analysis of micromechanical failure modes in a heterogeneous ceramic material system
    Zhai, J
    Zhou, M
    INTERNATIONAL JOURNAL OF FRACTURE, 2000, 101 (1-2) : 161 - 180
  • [2] Finite element analysis of micromechanical failure modes in a heterogeneous ceramic material system
    Zhai, J.
    Zhou, M.
    International Journal of Fracture, 2000, 101 (01) : 161 - 180
  • [3] Finite element analysis of viscoelastic composite structures based on a micromechanical material model
    Kurnatowski, B.
    Matzenmiller, A.
    COMPUTATIONAL MATERIALS SCIENCE, 2008, 43 (04) : 957 - 973
  • [4] Tribological Behavior Simulation of Ceramic Material Using the Finite Element Analysis
    Armencia, Adina Oana
    Hurjui, Loredana
    Tarniceriu, Cristina Claudia
    Saveanu, Catalina Iulia
    Balcos, Carina
    MATERIALE PLASTICE, 2020, 57 (01) : 272 - 277
  • [5] FINITE-ELEMENT ANALYSIS OF VIBRATIONAL-MODES IN PIEZOELECTRIC CERAMIC DISKS
    KUNKEL, HA
    LOCKE, S
    PIKEROEN, B
    IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 1990, 37 (04) : 316 - 328
  • [6] Failure analysis of exit edges in ceramic machining using finite element analysis
    Cao, YQ
    ENGINEERING FAILURE ANALYSIS, 2001, 8 (04) : 325 - 338
  • [7] Finite element analysis of the micromechanical resonant gyroscope
    Zhu, Yilun
    Wang, Shourong
    Qiu, Anping
    Dongnan Daxue Xuebao (Ziran Kexue Ban)/Journal of Southeast University (Natural Science Edition), 2004, 34 (01): : 38 - 41
  • [8] Micromechanical gyroscope finite-element analysis
    Nesterenko, T. G.
    Plotnikova, I. V.
    Plotnikov, I. A.
    Lysova, O. M.
    Zhaldybin, L. D.
    IEEE AEROSPACE AND ELECTRONIC SYSTEMS MAGAZINE, 2008, 23 (09) : 28 - 30
  • [9] Micromechanical finite element modeling of compressive fracture in confined alumina ceramic
    Warner, D. H.
    Molinari, J. F.
    ACTA MATERIALIA, 2006, 54 (19) : 5135 - 5145
  • [10] Fatigue failure load and finite element analysis of multilayer ceramic restorations
    Archangelo, K. C.
    Guilardi, L. F.
    Campanelli, D.
    Valandro, L. F.
    Borges, A. L. S.
    DENTAL MATERIALS, 2019, 35 (01) : 64 - 73