A Calibration-free Approach to Implementing P300-based Brain–computer Interface

被引:0
|
作者
Zhihua Huang
Jiannan Guo
Wenming Zheng
Yingjie Wu
Zhixiong Lin
Huiru Zheng
机构
[1] Fuzhou University,College of Computer and Data Science
[2] Southeast University,Key Laboratory of Child Development and Learning Science of Ministry of Education, Research Center for Learning Science
[3] Sanbo Brain Hospital of Capital Medical University,Department of Neurosurgery
[4] Ulster University,School of Computing
来源
Cognitive Computation | 2022年 / 14卷
关键词
P300 BCI; Reinforcement learning; Transfer learning; Calibration-free;
D O I
暂无
中图分类号
学科分类号
摘要
Introduction: As a direct bridge between the brain and the outer world, brain–computer interface (BCI) is expected to replace, restore, enhance, supplement, or improve the natural output of brain. The prospect of BCI serving humans is very broad. However, the extensive applications of BCI have not been fully achieved. One of reasons is that the cost of calibration reduces the convenience and usability of BCI. Methods: In this study, we proposed a calibration-free approach, which is based on the ideas of reinforcement learning and transfer learning, for P300-based BCI. This approach, composed of two algorithms: P300 linear upper confidence bound (PLUCB) and transferred PLUCB (TPLUCB), is able to learn during the usage by exploration and exploitation and allows P300-based BCI to start working without any calibration. Results: We tested the performances of PLUCB and TPLUCB using stepwise linear discriminant analysis (SWLDA), a commonly used method that needs calibration, as a baseline in simulated online experiments. The results showed the merits of PLUCB and TPLUCB. PLUCB can quickly increase the accuracies to the level of SWLDA. TPLUCB has surpassed SWLDA in the sample accuracy since it starts running. Both PLUCB and TPLUCB have the ability to keep improving the classification performance during the process. The overall sample accuracies (73.6±4.8%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$73.6\pm 4.8\%$$\end{document}, 73.1±4.9%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$73.1\pm 4.9\%$$\end{document}), overall symbol accuracies (80.4±12.8%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$80.4\pm 12.8\%$$\end{document}, 79.6±14.0%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$79.6\pm 14.0\%$$\end{document}), F-measures (0.45±0.06\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.45\pm 0.06$$\end{document}, 0.44±0.06\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.44\pm 0.06$$\end{document}) and information transfer ratios (ITR) (36.4±9.1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$36.4\pm 9.1$$\end{document}, 35.5±9.8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$35.5\pm 9.8$$\end{document}) of PLUCB and TPLUCB are significantly better than those of SWLDA (overall sample accuracy: 58.8±3.8%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$58.8\pm 3.8\%$$\end{document}, overall symbol accuracy: 69.0±18.3%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$69.0\pm 18.3\%$$\end{document}, F-measure: 0.38±0.04\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.38\pm 0.04$$\end{document}, ITR: 28.7±10.7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$28.7\pm 10.7$$\end{document}). Conclusions: The proposed approach, which does not need calibration but outperform SWLDA, is a very good option for the implementation of P300-based BCI.
引用
收藏
页码:887 / 899
页数:12
相关论文
共 50 条
  • [1] A Calibration-free Approach to Implementing P300-based Brain-computer Interface
    Huang, Zhihua
    Guo, Jiannan
    Zheng, Wenming
    Wu, Yingjie
    Lin, Zhixiong
    Zheng, Huiru
    [J]. COGNITIVE COMPUTATION, 2022, 14 (02) : 887 - 899
  • [2] A P300-based brain-computer interface
    Karlovskii D.V.
    Konyshev V.A.
    Selishchev S.V.
    [J]. Biomedical Engineering, 2007, 41 (1) : 29 - 33
  • [3] A P300-Based Brain-Computer Interface: Towards a Simpler Approach
    Melinscak, F.
    Jerbic, A. B.
    Cifrek, M.
    [J]. 2013 36TH INTERNATIONAL CONVENTION ON INFORMATION AND COMMUNICATION TECHNOLOGY, ELECTRONICS AND MICROELECTRONICS (MIPRO), 2013, : 1049 - 1052
  • [4] A P300-based brain-computer interface (BCI)
    Donchin, E
    Spencer, K
    Wijesinghe, R
    [J]. PSYCHOPHYSIOLOGY, 1999, 36 : S15 - S16
  • [5] TENSOR CLASSIFICATION FOR P300-BASED BRAIN COMPUTER INTERFACE
    Onishi, Akinari
    Anh Huy Phan
    Matsuoka, Kiyotoshi
    Cichocki, Andrzej
    [J]. 2012 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2012, : 581 - 584
  • [6] Cybersecurity Framework for P300-based Brain Computer Interface
    Belkacem, Abdelkader Nasreddine
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2020, : 1 - 6
  • [7] An improved P300-based brain-computer interface
    Serby, H
    Yom-Tov, E
    Inbar, GF
    [J]. IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2005, 13 (01) : 89 - 98
  • [8] P300-based Brain Computer Interface Experimental Setup
    Arboleda, Carolina
    Garcia, Eliana
    Posada, Alejandro
    Torres, Robinson
    [J]. 2009 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-20, 2009, : 598 - +
  • [9] Self-calibration algorithm in an asynchronous P300-based brain-computer interface
    Schettini, F.
    Aloise, F.
    Arico, P.
    Salinari, S.
    Mattia, D.
    Cincotti, F.
    [J]. JOURNAL OF NEURAL ENGINEERING, 2014, 11 (03)
  • [10] P300-based brain-computer interface for environmental control: an asynchronous approach
    Aloise, F.
    Schettini, F.
    Arico, P.
    Leotta, F.
    Salinari, S.
    Mattia, D.
    Babiloni, F.
    Cincotti, F.
    [J]. JOURNAL OF NEURAL ENGINEERING, 2011, 8 (02)