A lagrangian-based approach for universum twin bounded support vector machine with its applications

被引:0
|
作者
Hossein Moosaei
Milan Hladík
机构
[1] University of Bojnord,Department of Mathematics, Faculty of Science
[2] Charles University,Department of Applied Mathematics
[3] Prague University of Economics and Business,Department of Econometrics
关键词
Support vector machine; Twin SVM; Universum data; Pattern classification; Lagrangian function; Quadratic programming; 90C20; 90C25; 90C90;
D O I
暂无
中图分类号
学科分类号
摘要
The Universum provides prior knowledge about data in the mathematical problem to improve the generalization performance of the classifiers. Several works have shown that the Universum twin support vector machine (U\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathfrak {U} $\end{document}-TSVM) is an efficient method for binary classification problems. In this paper, we improve the U\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathfrak {U} $\end{document}-TSVM method and propose an improved Universum twin bounded support vector machine (named as IUTBSVM). Indeed, by introducing different Lagrangian functions for the primal problems, we obtain new dual formulations of U\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathfrak {U} $\end{document}-TSVM so that we do not need to compute inverse matrices. To reduce the computational time of the proposed method, we suggest a smaller size of the rectangular kernel matrices than the other methods. Numerical experiments on gender classification of human faces, handwritten digits recognition, and several UCI benchmark data sets indicate that the IUTBSVM is more efficient than the other four algorithms, namely U\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathfrak {U}$\end{document}-SVM, TSVM, U\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathfrak {U}$\end{document}-TSVM, and IUTSVM in the sense of the classification accuracy.
引用
收藏
页码:109 / 131
页数:22
相关论文
共 50 条
  • [1] A lagrangian-based approach for universum twin bounded support vector machine with its applications
    Moosaei, Hossein
    Hladik, Milan
    [J]. ANNALS OF MATHEMATICS AND ARTIFICIAL INTELLIGENCE, 2023, 91 (2-3) : 109 - 131
  • [2] Universum based Lagrangian twin bounded support vector machine to classify EEG signals
    Kumar, Bikram
    Gupta, Deepak
    [J]. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2021, 208
  • [3] Functional iterative approach for Universum-based primal twin bounded support vector machine to EEG classification (FUPTBSVM)
    Deepak Gupta
    Umesh Gupta
    Hemanga Jyoti Sarma
    [J]. Multimedia Tools and Applications, 2024, 83 : 22119 - 22151
  • [4] Functional iterative approach for Universum-based primal twin bounded support vector machine to EEG classification (FUPTBSVM)
    Gupta, Deepak
    Gupta, Umesh
    Sarma, Hemanga Jyoti
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (8) : 22119 - 22151
  • [5] Twin support vector machine with Universum data
    Qi, Zhiquan
    Tian, Yingjie
    Shi, Yong
    [J]. NEURAL NETWORKS, 2012, 36 : 112 - 119
  • [6] Improved universum twin support vector machine
    Richhariya, B.
    Sharma, A.
    Tanveer, M.
    [J]. 2018 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI), 2018, : 2045 - 2052
  • [7] A Novel Method for Solving Universum Twin Bounded Support Vector Machine in the Primal Space
    Moosaei, Hossein
    Khosravi, Saeed
    Bazikar, Fatemeh
    Hladik, Milan
    Guarracino, Mario Rosario
    [J]. ANNALS OF MATHEMATICS AND ARTIFICIAL INTELLIGENCE, 2023,
  • [8] ν-twin support vector machine with Universum data for classification
    Xu, Yitian
    Chen, Mei
    Yang, Zhiji
    Li, Guohui
    [J]. APPLIED INTELLIGENCE, 2016, 44 (04) : 956 - 968
  • [9] SMOOTH AUGMENTED LAGRANGIAN METHOD FOR TWIN BOUNDED SUPPORT VECTOR MACHINE
    Bazikar, Fatemeh
    Ketabchi, Saeed
    Moosaei, Hossein
    [J]. NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2022, 12 (04): : 659 - 678
  • [10] Inverse Free Universum Twin Support Vector Machine
    Moosaei, Hossein
    Hladik, Milan
    [J]. LEARNING AND INTELLIGENT OPTIMIZATION, LION 15, 2021, 12931 : 252 - 264