On the sign problem in 2D lattice super Yang-Mills

被引:0
|
作者
Simon Catterall
Richard Galvez
Anosh Joseph
Dhagash Mehta
机构
[1] Syracuse University,Department of Physics
[2] Theoretical Division,undefined
[3] Los Alamos National Laboratory,undefined
关键词
Extended Supersymmetry; Lattice Gauge Field Theories; BRST Symmetry;
D O I
暂无
中图分类号
学科分类号
摘要
In recent years a new class of supersymmetric lattice theories have been proposed which retain one or more exact supersymmetries for non-zero lattice spacing. Recently there has been some controversy in the literature concerning whether these theories suffer from a sign problem. In this paper we address this issue by conducting simulations of the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} = (2, 2) and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} = (8, 8) supersymmetric Yang-Mills theories in two dimensions for the U(N ) theories with N = 2, 3, 4, using the new twisted lattice formulations. Our results provide evidence that these theories do not suffer from a sign problem in the continuum limit. These results thus boost confidence that the new lattice formulations can be used successfully to explore non-perturbative aspects of four-dimensional \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} = 4 supersymmetric Yang-Mills theory.
引用
收藏
相关论文
共 50 条
  • [1] On the sign problem in 2D lattice super Yang-Mills
    Catterall, Simon
    Galvez, Richard
    Joseph, Anosh
    Mehta, Dhagash
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2012, (01):
  • [2] Absence of sign problem in two-dimensional N = (2,2) super Yang-Mills on lattice
    Hanada, Masanori
    Kanamori, Issaku
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2011, (01):
  • [3] Super Yang-Mills theory on lattice and the transformation
    Itoh, K
    Kato, M
    Sawanaka, H
    So, H
    Ukita, N
    [J]. NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2002, 106 : 947 - 949
  • [4] Toward a super Yang-Mills theory on the lattice
    Itoh, K
    Kato, M
    Sawanaka, H
    So, H
    Ukita, N
    [J]. PROGRESS OF THEORETICAL PHYSICS, 2002, 108 (02): : 363 - 374
  • [5] From 2d droplets to 2d Yang-Mills
    Chattopadhyay, Arghya
    Dutta, Suvankar
    Mukherjee, Debangshu
    Neetu
    [J]. NUCLEAR PHYSICS B, 2022, 974
  • [6] On 2D Yang-Mills theory and invariants of links
    Polyak, M
    Reshetikhin, N
    [J]. DEFORMATION THEORY AND SYMPLECTIC GEOMETRY: PROCEEDINGS OF THE ASCONA MEETING, JUNE 1996, 1997, 20 : 223 - 248
  • [7] 2D Discrete Yang-Mills Equations on the Torus
    Sushch, Volodymyr
    [J]. SYMMETRY-BASEL, 2024, 16 (07):
  • [8] Langevin dynamic for the 2D Yang-Mills measure
    Chandra, Ajay
    Chevyrev, Ilya
    Hairer, Martin
    Shen, Hao
    [J]. PUBLICATIONS MATHEMATIQUES DE L IHES, 2022, 136 (01): : 1 - 147
  • [9] Wilson loops: From 4D supersymmetric Yang-Mills theory to 2D Yang-Mills theory
    Drukker, Nadav
    Giombi, Simone
    Ricci, Riccardo
    Trancanelli, Diego
    [J]. PHYSICAL REVIEW D, 2008, 77 (04):
  • [10] A lattice formulation of super Yang-Mills theories with exact supersymmetry
    Sugino, F
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2004, (01):