Adaptive smoothing algorithms for nonsmooth composite convex minimization

被引:0
|
作者
Quoc Tran-Dinh
机构
[1] University of North Carolina at Chapel Hill (UNC),Department of Statistics and Operations Research
关键词
Nesterov’s smoothing technique; Accelerated proximal-gradient method; Adaptive algorithm; Composite convex minimization; Nonsmooth convex optimization; 90C25; 90-08;
D O I
暂无
中图分类号
学科分类号
摘要
We propose an adaptive smoothing algorithm based on Nesterov’s smoothing technique in Nesterov (Math Prog 103(1):127–152, 2005) for solving “fully” nonsmooth composite convex optimization problems. Our method combines both Nesterov’s accelerated proximal gradient scheme and a new homotopy strategy for smoothness parameter. By an appropriate choice of smoothing functions, we develop a new algorithm that has the O1ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}\left( \frac{1}{\varepsilon }\right) $$\end{document}-worst-case iteration-complexity while preserves the same complexity-per-iteration as in Nesterov’s method and allows one to automatically update the smoothness parameter at each iteration. Then, we customize our algorithm to solve four special cases that cover various applications. We also specify our algorithm to solve constrained convex optimization problems and show its convergence guarantee on a primal sequence of iterates. We demonstrate our algorithm through three numerical examples and compare it with other related algorithms.
引用
收藏
页码:425 / 451
页数:26
相关论文
共 50 条
  • [1] Adaptive smoothing algorithms for nonsmooth composite convex minimization
    Quoc Tran-Dinh
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2017, 66 (03) : 425 - 451
  • [2] BARRIER SMOOTHING FOR NONSMOOTH CONVEX MINIMIZATION
    Tran-Dinh, Quoc
    Li, Yen-Huan
    Cevher, Volkan
    [J]. 2014 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2014,
  • [3] Adaptive regularization minimization algorithms with nonsmooth norms
    Gratton, S.
    Toint, Ph L.
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2023, 43 (02) : 920 - 949
  • [4] PROXIMAL ITERATIVE GAUSSIAN SMOOTHING ALGORITHM FOR A CLASS OF NONSMOOTH CONVEX MINIMIZATION PROBLEMS
    Liu, Sanming
    Wang, Zhijie
    Liu, Chongyang
    [J]. NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2015, 5 (01): : 79 - 89
  • [5] On Convergence Analysis of Iterative Smoothing Methods for a Class of Nonsmooth Convex Minimization Problems
    Liu, Sanming
    Wang, Zhijie
    [J]. 2014 SEVENTH INTERNATIONAL JOINT CONFERENCE ON COMPUTATIONAL SCIENCES AND OPTIMIZATION (CSO), 2014, : 247 - 251
  • [6] An adaptive primal-dual framework for nonsmooth convex minimization
    Quoc Tran-Dinh
    Ahmet Alacaoglu
    Olivier Fercoq
    Volkan Cevher
    [J]. Mathematical Programming Computation, 2020, 12 : 451 - 491
  • [7] An adaptive primal-dual framework for nonsmooth convex minimization
    Quoc Tran-Dinh
    Alacaoglu, Ahmet
    Fercoq, Olivier
    Cevher, Volkan
    [J]. MATHEMATICAL PROGRAMMING COMPUTATION, 2020, 12 (03) : 451 - 491
  • [8] Smoothing unadjusted Langevin algorithms for nonsmooth composite potential functions
    Ghaderi, Susan
    Ahookhosh, Masoud
    Arany, Adam
    Skupin, Alexander
    Patrinos, Panagiotis
    Moreau, Yves
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2024, 464
  • [9] Smoothing methods for nonsmooth, nonconvex minimization
    Chen, Xiaojun
    [J]. MATHEMATICAL PROGRAMMING, 2012, 134 (01) : 71 - 99
  • [10] Smoothing methods for nonsmooth, nonconvex minimization
    Xiaojun Chen
    [J]. Mathematical Programming, 2012, 134 : 71 - 99