Prediction of Compaction Characteristics of Fine-Grained Soils Using Consistency Limits

被引:0
|
作者
K. Farooq
U. Khalid
H. Mujtaba
机构
[1] University of Engineering and Technology,Department of Civil Engineering
关键词
Correlation; Compaction parameters; Fine-grained soils; Liquid limit; Plasticity index; Compactive effort; Maximum dry unitweight; Optimum moisture content;
D O I
暂无
中图分类号
学科分类号
摘要
Evaluation of laboratory compaction parameters, i.e., maximum dry unit weight (γdmax)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(\gamma_{{\rm d}{\rm max}})}$$\end{document} and optimum moisture content (OMC) of a soil, is an essential task in controlling field compaction for all earthworks construction. Laboratory determination of compaction parameters requires considerable time and effort which can be saved through the use of empirical correlations during early stages of a project. In this paper, correlations between consistency limits, compactive effort (CE) and compaction parameters, i.e., γdmax\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\gamma_{{\rm d}{\rm max}}}$$\end{document} and OMC, for fine-grained soils have been proposed. In order to develop the correlations, 105 soil samples of fine-grained soils representing various classification groups were collected from different areas of Punjab province of Pakistan. Besides classification tests, standard and modified proctor compaction tests were performed on the selected samples. Based on the classification test results, the selected samples are classified as CH, CL, CL-ML, ML with gravel fraction in the range of 0–12 %, sand fraction from 2 to 48 % and silt clay fraction from 50 to 95 %. The laboratory standard and modified compaction tests on the selected samples indicate the γdmax\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\gamma_{{\rm d}{\rm max}}}$$\end{document} in the range of 15.8–19.7 kN/m3 with OMC varying from 9 to 19.5 %. Multiple regression analyses were performed on the experimental data, and correlations have been proposed to predict the compaction parameters (γdmax\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\gamma_{{\rm d}{\rm max}}}$$\end{document} and OMC) in terms of LL, PI and CE. In order to validate the proposed equations, an independent data set of 37 samples was used for the validation purpose. The comparative results showed that the variation between experimental and predicted values of γdmax\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\gamma_{{\rm d}{\rm max}}}$$\end{document} is within ±2.5 % and that of the OMC (%) is within ±9.5 % at 95 % confidence interval. Based on the correlations developed, predictive curves corresponding to standard and modified proctor energy are proposed for quick estimation of γdmax\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\gamma_{{\rm d}{\rm max}}}$$\end{document} and OMC based on LL and PI without performing the laboratory compaction tests.
引用
收藏
页码:1319 / 1328
页数:9
相关论文
共 50 条
  • [1] Prediction of Compaction Characteristics of Fine-Grained Soils Using Consistency Limits
    Farooq, K.
    Khalid, U.
    Mujtaba, H.
    [J]. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2016, 41 (04) : 1319 - 1328
  • [2] Prediction of compaction characteristics of fine-grained soils
    Gurtug, Y
    Sridharan, A
    [J]. GEOTECHNIQUE, 2002, 52 (10): : 761 - 763
  • [3] Predicting Compaction Characteristics of Fine-Grained Soils in Terms of Atterberg Limits
    Saikia A.
    Baruah D.
    Das K.
    Rabha H.J.
    Dutta A.
    Saharia A.
    [J]. International Journal of Geosynthetics and Ground Engineering, 2017, 3 (2)
  • [4] Prediction of compaction parameters for fine-grained and coarse-grained soils: a review
    Verma, Gaurav
    Kumar, Brind
    [J]. INTERNATIONAL JOURNAL OF GEOTECHNICAL ENGINEERING, 2020, 14 (08) : 970 - 977
  • [5] Re-examination of compaction characteristics of fine-grained soils
    Pandian, NS
    Nagaraj, TS
    Manoj, M
    [J]. GEOTECHNIQUE, 1997, 47 (02): : 363 - 366
  • [6] Static Method to Determine Compaction Characteristics of Fine-Grained Soils
    Sharma, B.
    Sridharan, A.
    Talukdar, P.
    [J]. GEOTECHNICAL TESTING JOURNAL, 2016, 39 (06): : 1048 - 1055
  • [7] Prediction of resilient modulus with consistency index for fine-grained soils
    Chu, Xuanxuan
    Dawson, Andrew
    Thom, Nick
    [J]. TRANSPORTATION GEOTECHNICS, 2021, 31
  • [8] Modelling the compaction curve of fine-grained soils
    Al-Badran, Yasir
    Schanz, Tom
    [J]. SOILS AND FOUNDATIONS, 2014, 54 (03) : 426 - 438
  • [9] Electronic hammer for nondestructive determination of compaction characteristics of fine-grained soils
    Halimi, Behrouz
    Saba, Hamidreza
    MehrAbadi, Saeid Jafari
    Jam, Saeid Saeidi
    [J]. INGENIERIA UC, 2019, 26 (03): : 352 - 360
  • [10] A research on consistency limits, compaction, and strength properties of sheep wool–fine-grained soil mixtures
    Bashdar Omer
    Volkan Kalpakcı
    Hunar Hama Ali
    [J]. Arabian Journal of Geosciences, 2022, 15 (1)