Projections and Traces on von Neumann Algebras

被引:0
|
作者
A. M. Bikchentaev
S. A. Abed
机构
[1] Kazan (Volga Region) Federal University,N. I. Lobachevskii Institute of Mathematics and Mechanics
来源
关键词
Hilbert space; linear operator; projection; von Neumann algebra; positive functional; trace; operator inequality; commutativity;
D O I
暂无
中图分类号
学科分类号
摘要
Let P, Q be projections on a Hilbert space. We prove the equivalence of the following conditions: (i) PQ + QP ≤ 2(QPQ)p for some number 0 < p ≤ 1; (ii) PQ is paranormal; (iii) PQ is M*-paranormal; (iv) PQ = QP. This allows us to obtain the commutativity criterion for a von Neumann algebra. For a positive normal functional φ on von Neumann algebra M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{M}$$\end{document} it is proved the equivalence of the following conditions: (i) φ is tracial; (ii) φ(PQ + QP) ≤ 2φ((QPQ)p) for all projections P,Q ∈ M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{M}$$\end{document} and for some p = p(P, Q) ∈ (0,1]; (iii) φ(PQP) ≤ φ(P)1/pφ(Q)1/q for all projections P, Q ∈ M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{M}$$\end{document} and some positive numbers p = p(P, Q), q = q(P, Q) with 1/p+ 1/q = 1, p ≠ 2. Corollary: for a positive normal functional φ on M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{M}$$\end{document} the following conditions are equivalent: (i) φ is tracial; (ii) φ(A + A*) ≤ 2φ(∣A*∣) for all A ∈ M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{M}$$\end{document}.
引用
收藏
页码:1260 / 1267
页数:7
相关论文
共 50 条
  • [1] Projections and Traces on von Neumann Algebras
    Bikchentaev, A. M.
    Abed, S. A.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2019, 40 (09) : 1260 - 1267
  • [2] Commutativity of projections and characterization of traces on Von Neumann algebras
    A.M. Bikchentaev
    Siberian Mathematical Journal, 2010, 51 : 971 - 977
  • [3] COMMUTATIVITY OF PROJECTIONS AND CHARACTERIZATION OF TRACES ON VON NEUMANN ALGEBRAS
    Bikchentaev, A. M.
    SIBERIAN MATHEMATICAL JOURNAL, 2010, 51 (06) : 971 - 977
  • [4] Band projections and decomposition of normal traces on von Neumann algebras
    Talebi, Ali
    Moslehian, Mohammad Sal
    Pliev, Marat
    Sadeghi, Ghadir
    POSITIVITY, 2022, 26 (04)
  • [5] Band projections and decomposition of normal traces on von Neumann algebras
    Ali Talebi
    Mohammad Sal Moslehian
    Marat Pliev
    Ghadir Sadeghi
    Positivity, 2022, 26
  • [6] Commutation of Projections and Characterization of Traces on von Neumann Algebras. III
    A. M. Bikchentaev
    International Journal of Theoretical Physics, 2015, 54 : 4482 - 4493
  • [7] Commutation of Projections and Characterization of Traces on von Neumann Algebras. III
    Bikchentaev, A. M.
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2015, 54 (12) : 4482 - 4493
  • [8] TRACES AND SUBADDITIVE MEASURES ON PROJECTIONS IN JBW-ALGEBRAS AND VON-NEUMANN-ALGEBRAS
    BUNCE, LJ
    HAMHALTER, J
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 123 (01) : 157 - 160
  • [9] INEQUALITIES FOR TRACES ON VON NEUMANN ALGEBRAS
    RUSKAI, MB
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1972, 26 (04) : 280 - &
  • [10] MAHARAM TRACES ON VON NEUMANN ALGEBRAS
    Chilin, V. I.
    Zakirov, B. S.
    METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY, 2010, 16 (02): : 101 - 111