The aim of this note is to analyse the structure of the L0\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$L^0$$\end{document}-normed L0\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$L^0$$\end{document}-modules over a metric measure space. These are a tool that has been introduced by Gigli to develop a differential calculus on spaces verifying the Riemannian Curvature Dimension condition. More precisely, we discuss under which conditions an L0\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$L^0$$\end{document}-normed L0\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$L^0$$\end{document}-module can be viewed as the space of sections of a suitable measurable Banach bundle and in which sense such correspondence can be actually made into an equivalence of categories.
机构:
Institute of Pure Mathematics, University of Tartu, 50409 Tartu, 2 Liivi Str.Institute of Pure Mathematics, University of Tartu, 50409 Tartu, 2 Liivi Str.