The Serre–Swan theorem for normed modules

被引:0
|
作者
Danka Lučić
Enrico Pasqualetto
机构
[1] SISSA,
关键词
Normed modules; Measurable Banach bundles; Serre–Swan theorem; Metric measure spaces; 13C05; 18F15; 30L99; 51F99;
D O I
暂无
中图分类号
学科分类号
摘要
The aim of this note is to analyse the structure of the L0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^0$$\end{document}-normed L0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^0$$\end{document}-modules over a metric measure space. These are a tool that has been introduced by Gigli to develop a differential calculus on spaces verifying the Riemannian Curvature Dimension condition. More precisely, we discuss under which conditions an L0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^0$$\end{document}-normed L0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^0$$\end{document}-module can be viewed as the space of sections of a suitable measurable Banach bundle and in which sense such correspondence can be actually made into an equivalence of categories.
引用
收藏
页码:385 / 404
页数:19
相关论文
共 50 条