Up–down representations and ergodic theory in nilpotent Lie groups

被引:0
|
作者
Hatem Hamrouni
机构
[1] Faculty of Sciences at Sfax,Department of Mathematics
来源
manuscripta mathematica | 2008年 / 127卷
关键词
22E25; 22E27; 22D40;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a connected and simply connected nilpotent Lie group and A a closed connected subgroup of G. Let Γ be a discrete cocompact subgroup of G. In the first part of this paper we give the direct integral decomposition of the up–down representation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${({\rm Ind}_\Gamma^G 1)\vert_A}$$\end{document} . As a consequence, we establish a necessary and sufficient condition for A to act ergodically on G/Γ in the case when Γ is a lattice subgroup of G and A is a one-parameter subgroup of G.
引用
收藏
页码:511 / 519
页数:8
相关论文
共 50 条