Differential Operators on Supercircle: Conformally Equivariant Quantization and Symbol Calculus

被引:0
|
作者
Hichem Gargoubi
Najla Mellouli
Valentin Ovsienko
机构
[1] I.P.E.I.T,Institut Camille Jordan
[2] CNRS UMR5208,undefined
来源
关键词
equivariant quantization; superconformal algebra; 53D55; 17B68; 17B10;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the supercircle S1|1 equipped with the standard contact structure. The Lie superalgebra \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\fancyscript{K}(1)}$$\end{document} of contact vector fields contains the Möbius superalgebra osp(1|2). We study the space of linear differential operators on weighted densities as a module over osp(1|2). We introduce the canonical isomorphism between this space and the corresponding space of symbols and find all cases where such an isomorphism does not exist.
引用
收藏
页码:51 / 65
页数:14
相关论文
共 50 条