Combination of Two Experimental Designs to Optimize the Dimethylphthalate Elimination on Activated Carbon Elaborated from Arundo donax

被引:0
|
作者
N. Doufene
T. Berrama
D. Tahtat
S. Benredouane
C. Nekaa
机构
[1] University of Sciences and Technology Houari Boumediene,Laboratory of Industrial Process Engineering Sciences
[2] Nuclear Research Center of Algiers,Department of Irradiation Technology
关键词
Experimental design; Optimization; Adsorption; Dimethylphthalates;
D O I
暂无
中图分类号
学科分类号
摘要
This work aims to apply a combination of fractional factorial design (FFD) and Doehlert design to determine the operational conditions allowing to study the adsorption process applied for dimethylphthalate (DMP) elimination from aqueous solution. The Arundo donax stems plant are used to prepare various activated carbons. The investigated parameters and their levels are impregnation rate (r=2-4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r = 2{-}4$$\end{document}), activating agent concentration (Cact=30-50%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${C}_{{\mathrm{act}}} = 30{-}50\%$$\end{document}), activation time (tact\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${t}_{{\mathrm{act}}}$$\end{document} = 2-4h), carbonization temperature (Tcarb=300-500∘C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${T}_{\mathrm{carb}} = 300{-}500\,{^{\circ }}\hbox {C}$$\end{document}), mixture temperature (T=25-35∘C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T = 25{-}35\,{^{\circ }}\hbox {C}$$\end{document}), DMP concentration (C0=50-100mgL-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${C}_{0}= 50{-}100\,\hbox {mg}\,\hbox {L}^{-1})$$\end{document}, carbonization time (tcarb=1-2h\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${t}_{{\mathrm{carb}}} = 1{-}2\,\hbox {h}$$\end{document}), stirring speed (v=200-400rpm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v = 200{-}400\,\hbox {rpm}$$\end{document}) and activated carbon dose (mad=0.1-0.2gL-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${m}_{\mathrm{ad}} = 0.1{-}0.2\,\hbox {g}\,\hbox {L}^{-1})$$\end{document}. The FFD is applied for parameters screening. Two responses are defined: the activated carbon production yield (Yp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Y_\mathrm{p}$$\end{document}) and DMP elimination yield (Ye\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Y_\mathrm{e}$$\end{document}). When both responses are taken into account, according to the p value, the significant factors are (mad\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m_\mathrm{ad}$$\end{document}), (Tcarb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_\mathrm{carb}$$\end{document}), (Cact\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_\mathrm{act}$$\end{document}) with a value < 0.0001, and (tcarb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t_\mathrm{carb}$$\end{document}) with a value of 0.0018. These parameters are considered in optimization process. To choose the most appropriate mathematical model, Mallows criterion, corrected Akaike information criterion, Bayesian information criterion, Amemiya Prediction Criterion and ANOVA are applied. This model presents a saddle point, so the optimal conditions are identified at the study field limits for each parameter, so the optimal values are mad=0.100±10-3gL-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${m}_\mathrm{ad} = 0.100 \pm 10^{-3}\,\hbox {g}\,\hbox {L}^{-1}$$\end{document}, Tcarb=357±5∘C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${T}_\mathrm{carb} = 357 \pm 5\, {^{\circ }}\hbox {C}$$\end{document}; Cact=47±5%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${C}_\mathrm{act} = 47 \pm 5\%$$\end{document}; tcar=0.209±0.083h\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {tcar} = 0.209 \pm \,0.083\,\hbox {h}$$\end{document}. Under these conditions, the removal efficiency exceeds 97±3%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$97 \pm 3\%$$\end{document} and the BET surface area of activated carbon optimal is 1315m2g-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1315\,\hbox {m}^{2}\,\hbox {g}^{-1}$$\end{document}.
引用
收藏
页码:5275 / 5287
页数:12
相关论文
共 9 条
  • [1] Combination of Two Experimental Designs to Optimize the Dimethylphthalate Elimination on Activated Carbon Elaborated from <bold>Arundo donax</bold>
    Doufene, N.
    Berrama, T.
    Tahtat, D.
    Benredouane, S.
    Nekaa, C.
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2019, 44 (06) : 5275 - 5287
  • [2] Determination of adsorption operating conditions in dynamic mode on basis of batch study: Application for Dimethylphthalate elimination on activated carbon prepared from Arundo donax
    Doufene, Nassim
    Berrama, Tarek
    Nekaa, Chakib
    Dadou, Salima
    CHEMICAL ENGINEERING COMMUNICATIONS, 2019, 206 (08) : 1015 - 1034
  • [3] Hydrogen storage capacity and methylene blue adsorption performance of activated carbon produced from Arundo donax
    Uner, Osman
    MATERIALS CHEMISTRY AND PHYSICS, 2019, 237
  • [4] The effect of carbonization temperature, carbonization time and impregnation ratio on the properties of activated carbon produced from Arundo donax
    Uner, Osman
    Bayrak, Yuksel
    MICROPOROUS AND MESOPOROUS MATERIALS, 2018, 268 : 225 - 234
  • [5] Amoxicillin adsorption on microwave prepared activated carbon from Arundo donax Linn: Isotherms, kinetics, and thermodynamics studies
    Chayid, Marwa A.
    Ahmecd, Muthanna J.
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2015, 3 (03): : 1592 - 1601
  • [6] SYNERGISTIC EFFECTS OF THE COMBINATION OF OZONE AND POWDERED ACTIVATED CARBON FOR THE ELIMINATION OF EMERGING CONTAMINANTS FROM HOSPITAL WASTEWATER
    Lyko, S.
    Nafo, I.
    PROCEEDINGS OF THE 13TH INTERNATIONAL CONFERENCE ON ENVIRONMENTAL SCIENCE AND TECHNOLOGY, 2013,
  • [7] DOM removal from surface water by activated carbon vs. a nanocomposite: an experimental and modeling approach to optimize treatment
    Kummel, Mario L.
    Shabtai, Itamar A.
    Nir, Shlomo
    Mishael, Yael G.
    ENVIRONMENTAL SCIENCE-WATER RESEARCH & TECHNOLOGY, 2023, 9 (05) : 1531 - 1544
  • [8] Adsorption modeling of Orange G dye on mesoporous activated carbon prepared from Algerian date pits using experimental designs
    Bouchemal, Naima
    Azoudj, Yacine
    Merzougui, Zoulikha
    Addoun, Fatima
    DESALINATION AND WATER TREATMENT, 2012, 45 (1-3) : 284 - 290
  • [9] A two-stage adsorption of cyanide gold complexes onto activated carbon inferred from various experimental studies
    Lagerge, S
    Zajac, J
    Partyka, S
    Groszek, AJ
    Chesneau, M
    LANGMUIR, 1997, 13 (17) : 4683 - 4692