A fully nonlinear multi-parameter shell model with thickness variation and a triangular shell finite element

被引:0
|
作者
P. M. Pimenta
E. M. B. Campello
P. Wriggers
机构
[1] Polytechnic School at University of São Paulo,Institut für Baumechanik und Numerische Mechanik
[2] Polytechnic School at University of São Paulo,undefined
[3] Universität Hannover,undefined
来源
Computational Mechanics | 2004年 / 34卷
关键词
Thickness variation; Large strains; Finite rotations; Triangular shell element;
D O I
暂无
中图分类号
学科分类号
摘要
This work presents a fully nonlinear multi-parameter shell formulation together with a triangular shell finite element for the solution of static boundary value problems. Our approach accounts for thickness variation as additional nodal DOFs, using a director theory with a standard Reissner-Mindlin kinematical assumption. Finite rotations are exactly treated by the Euler-Rodrigues formula in a pure Lagrangean framework, and elastic constitutive equations are consistently derived from fully three-dimensional finite strain constitutive models. The corresponding 6-node triangular shell element is presented as a generalization of the T6-3i triangle introduced by the authors in [3].
引用
收藏
页码:181 / 193
页数:12
相关论文
共 50 条
  • [1] A fully nonlinear multi-parameter shell model with thickness variation and a triangular shell finite element
    Pimenta, PM
    Campello, EMB
    Wriggers, P
    COMPUTATIONAL MECHANICS, 2004, 34 (03) : 181 - 193
  • [2] A triangular finite shell element based on a fully nonlinear shell formulation
    Campello, EMB
    Pimenta, PM
    Wriggers, P
    COMPUTATIONAL MECHANICS, 2003, 31 (06) : 505 - 518
  • [3] A triangular finite shell element based on a fully nonlinear shell formulation
    E. M. B. Campello
    P. M. Pimenta
    P. Wriggers
    Computational Mechanics, 2003, 31 : 505 - 518
  • [4] Geometrically nonlinear analysis of shell structures using a flat triangular shell finite element
    Erez Gal
    Robert Levy
    Archives of Computational Methods in Engineering, 2006, 13 : 331 - 388
  • [5] TRIANGULAR THIN SHELL FINITE ELEMENT: NONLINEAR ANALYSIS.
    Thomas, G.R.
    Gallagher, R.H.
    NASA Contractor Reports, 1975,
  • [6] A 6-Parameter Triangular Flat Shell Element for Nonlinear Analysis
    Rezaiee-Pajand, Mohammad
    Masoodi, Amir R.
    Arabi, E.
    EUROPEAN JOURNAL OF COMPUTATIONAL MECHANICS, 2019, 28 (03): : 237 - 267
  • [7] Nonlinear finite element analysis based on macro triangular partition shell element
    Cao, Yang
    Li, Jie
    Jisuan Lixue Xuebao/Chinese Journal of Computational Mechanics, 2008, 25 (02): : 139 - 143
  • [8] A simple fully nonlinear Kirchhoff-Love shell finite element
    Sanchez, Matheus L.
    Costa e Silva, Catia
    Pimenta, Paulo M.
    LATIN AMERICAN JOURNAL OF SOLIDS AND STRUCTURES, 2020, 17 (08) : 1 - 16
  • [9] On the shell thickness-stretching effects using seven-parameter triangular element
    Rezaiee-Pajand, M.
    Masoodi, Amir R.
    Arabi, E.
    EUROPEAN JOURNAL OF COMPUTATIONAL MECHANICS, 2018, 27 (02): : 163 - 185
  • [10] A triangular shell element for geometrically nonlinear analysis
    M. Rezaiee-Pajand
    E. Arabi
    Amir R. Masoodi
    Acta Mechanica, 2018, 229 : 323 - 342