Stability of closed timelike curves in the Gödel universe

被引:0
|
作者
Valéria M. Rosa
Patricio S. Letelier
机构
[1] Universidade Federal de Viçosa,Departamento de Matemática
[2] Universidade Estadual de Campinas,Departamento de Matemática Aplicada
来源
关键词
Linear Stability; Killing Vector; Geodesic Equation; Linear Perturbation; Timelike Curve;
D O I
暂无
中图分类号
学科分类号
摘要
We study, in some detail, the linear stability of closed timelike curves in the Gödel universe. We show that these curves are stable. We present a simple extension (deformation) of the Gödel metric that contains a class of closed timelike curves similar to the ones associated to the original metric. This extension correspond to the addition of matter whose energy-momentum tensor is analyzed. We find the conditions to have matter that satisfies the usual energy conditions. We study the stability of closed timelike curves in the presence of usual matter as well as in the presence of exotic matter (matter that does satisfy the above mentioned conditions). We find that the closed timelike curves in the Gödel universe with or without the inclusion of regular or exotic matter are stable under linear perturbations. We also find a sort of structural stability.
引用
收藏
页码:1419 / 1435
页数:16
相关论文
共 50 条
  • [1] Stability of closed timelike curves in the Godel universe
    Rosa, Valeria M.
    Letelier, Patricio S.
    GENERAL RELATIVITY AND GRAVITATION, 2007, 39 (09) : 1419 - 1435
  • [2] Quantum avoidance of Gödel’s closed timelike curves
    Zhe Zhao
    Leonardo Modesto
    The European Physical Journal C, 83
  • [3] Stability of closed timelike curves in a Galileon model
    Evslin, Jarah
    JOURNAL OF HIGH ENERGY PHYSICS, 2012, (03):
  • [4] Stability of closed timelike curves in a Galileon model
    Jarah Evslin
    Journal of High Energy Physics, 2012
  • [5] Detection of closed timelike curves
    Bonnor, W. B.
    GENERAL RELATIVITY AND GRAVITATION, 2009, 41 (11) : 2633 - 2635
  • [6] Detection of closed timelike curves
    W. B. Bonnor
    General Relativity and Gravitation, 2009, 41 : 2633 - 2635
  • [7] Simulations of Closed Timelike Curves
    Todd A. Brun
    Mark M. Wilde
    Foundations of Physics, 2017, 47 : 375 - 391
  • [8] Simulations of Closed Timelike Curves
    Brun, Todd A.
    Wilde, Mark M.
    FOUNDATIONS OF PHYSICS, 2017, 47 (03) : 375 - 391
  • [9] Unwrapping Closed Timelike Curves
    Slobodov, Sergei
    FOUNDATIONS OF PHYSICS, 2008, 38 (12) : 1082 - 1109
  • [10] Ringholes and closed timelike curves
    GonzalezDiaz, PF
    PHYSICAL REVIEW D, 1996, 54 (10) : 6122 - 6131